Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions (1808.06296v3)

Published 20 Aug 2018 in math.OC and stat.ML

Abstract: Although stochastic gradient descent (SGD) method and its variants (e.g., stochastic momentum methods, AdaGrad) are the choice of algorithms for solving non-convex problems (especially deep learning), there still remain big gaps between the theory and the practice with many questions unresolved. For example, there is still a lack of theories of convergence for SGD and its variants that use stagewise step size and return an averaged solution in practice. In addition, theoretical insights of why adaptive step size of AdaGrad could improve non-adaptive step size of {\sgd} is still missing for non-convex optimization. This paper aims to address these questions and fill the gap between theory and practice. We propose a universal stagewise optimization framework for a broad family of {\bf non-smooth non-convex} (namely weakly convex) problems with the following key features: (i) at each stage any suitable stochastic convex optimization algorithms (e.g., SGD or AdaGrad) that return an averaged solution can be employed for minimizing a regularized convex problem; (ii) the step size is decreased in a stagewise manner; (iii) an averaged solution is returned as the final solution that is selected from all stagewise averaged solutions with sampling probabilities {\it increasing} as the stage number. Our theoretical results of stagewise AdaGrad exhibit its adaptive convergence, therefore shed insights on its faster convergence for problems with sparse stochastic gradients than stagewise SGD. To the best of our knowledge, these new results are the first of their kind for addressing the unresolved issues of existing theories mentioned earlier. Besides theoretical contributions, our empirical studies show that our stagewise SGD and ADAGRAD improve the generalization performance of existing variants/implementations of SGD and ADAGRAD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zaiyi Chen (14 papers)
  2. Zhuoning Yuan (14 papers)
  3. Jinfeng Yi (61 papers)
  4. Bowen Zhou (141 papers)
  5. Enhong Chen (242 papers)
  6. Tianbao Yang (162 papers)
Citations (58)

Summary

We haven't generated a summary for this paper yet.