Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Higher-order accurate two-sample network inference and network hashing (2208.07573v3)

Published 16 Aug 2022 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: Two-sample hypothesis testing for network comparison presents many significant challenges, including: leveraging repeated network observations and known node registration, but without requiring them to operate; relaxing strong structural assumptions; achieving finite-sample higher-order accuracy; handling different network sizes and sparsity levels; fast computation and memory parsimony; controlling false discovery rate (FDR) in multiple testing; and theoretical understandings, particularly regarding finite-sample accuracy and minimax optimality. In this paper, we develop a comprehensive toolbox, featuring a novel main method and its variants, all accompanied by strong theoretical guarantees, to address these challenges. Our method outperforms existing tools in speed and accuracy, and it is proved power-optimal. Our algorithms are user-friendly and versatile in handling various data structures (single or repeated network observations; known or unknown node registration). We also develop an innovative framework for offline hashing and fast querying as a very useful tool for large network databases. We showcase the effectiveness of our method through comprehensive simulations and applications to two real-world datasets, which revealed intriguing new structures.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets