Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Solving boolean satisfiability problems with the quantum approximate optimization algorithm (2208.06909v1)

Published 14 Aug 2022 in quant-ph

Abstract: The quantum approximate optimization algorithm (QAOA) is one of the most prominent proposed applications for near-term quantum computing. Here we study the ability of QAOA to solve hard constraint satisfaction problems, as opposed to optimization problems. We focus on the fundamental boolean satisfiability problem, in the form of random $k$-SAT. We develop analytic bounds on the average success probability of QAOA over random boolean formulae at the satisfiability threshold, as the number of variables $n$ goes to infinity. The bounds hold for fixed parameters and when $k$ is a power of 2. We complement these theoretical results with numerical results on the performance of QAOA for small $n$, showing that these match the limiting theoretical bounds closely. We then use these results to compare QAOA with leading classical solvers. In the case of random 8-SAT, we find that for around 14 ansatz layers, QAOA matches the scaling performance of the highest-performance classical solver we tested, WalkSATlm. For larger numbers of layers, QAOA outperforms WalkSATlm, with an ultimate level of advantage that is still to be determined. Our methods provide a framework for analysing the performance of QAOA for hard constraint satisfaction problems and finding further speedups over classical algorithms.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets