2000 character limit reached
An Improved Trickle-Down Theorem for Partite Complexes (2208.04486v3)
Published 9 Aug 2022 in cs.DM, cs.DS, and math.CO
Abstract: We prove a strengthening of the trickle down theorem for partite complexes. Given a $(d+1)$-partite $d$-dimensional simplicial complex, we show that if "on average" the links of faces of co-dimension 2 are $\frac{1-\delta}{d}$-(one-sided) spectral expanders, then the link of any face of co-dimension $k$ is an $O(\frac{1-\delta}{k\delta})$-(one-sided) spectral expander, for all $3\leq k\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have spectral expansion at most $O(1/k)$ fraction of the spectral expansion of the links of the worst faces of co-dimension $2$.