Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Dimensional Random Walks and Colorful Expansion (1604.02947v4)

Published 11 Apr 2016 in cs.CC and math.CO

Abstract: Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension $d$ has vertices, edges, triangles, pyramids, up to $d$-dimensional cells. For any $0 \leq i < d$, a high order random walk on dimension $i$ moves between neighboring $i$-faces (e.g., edges) of the complex, where two $i$-faces are considered neighbors if they share a common $(i+1)$-face (e.g., a triangle). The case of $i=0$ recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the $1$-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} $0 \le i < d$ the high order random walk on dimension $i$ converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.

Citations (19)

Summary

We haven't generated a summary for this paper yet.