Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Set-Theoretic Decision Procedure for Quantifier-Free, Decidable Languages Extended with Restricted Quantifiers (2208.03518v1)

Published 6 Aug 2022 in cs.LO and cs.SE

Abstract: Let $\mathcal{L}{\mathcal{X}}$ be the language of first-order, decidable theory $\mathcal{X}$. Consider the language, $\mathcal{L}{\mathcal{RQ}}(\mathcal{X})$, that extends $\mathcal{L}{\mathcal{X}}$ with formulas of the form $\forall x \in A: \phi$ (restricted universal quantifier, RUQ) and $\exists x \in A: \phi$ (restricted existential quantifier, REQ), where $A$ is a finite set and $\phi$ is a formula made of $\mathcal{X}$-formulas, RUQ and REQ. That is, $\mathcal{L}{\mathcal{RQ}}(\mathcal{X})$ admits nested restricted quantifiers. In this paper we present a decision procedure for $\mathcal{L}{\mathcal{RQ}}(\mathcal{X})$ based on the decision procedure already defined for the Boolean algebra of finite sets extended with restricted intensional sets ($\mathcal{L}\mathcal{RIS}$). The implementation of the decision procedure as part of the ${log}$ (`setlog') tool is also introduced. The usefulness of the approach is shown through a number of examples drawn from several real-world case studies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.