Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A set-theoretical approach for ABox reasoning services (Extended Version) (1702.03096v7)

Published 10 Feb 2017 in cs.LO

Abstract: In this paper we consider the most common ABox reasoning services for the description logic $\mathcal{DL}\langle \mathsf{4LQS{R,!\times}}\rangle(\mathbf{D})$ ($\mathcal{DL}{\mathbf{D}}{4,!\times}$, for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment \flqsr. The description logic $\mathcal{DL}{\mathbf{D}}{4,!\times}$ is very expressive, as it admits various concept and role constructs, and data types, that allow one to represent rule-based languages such as SWRL. Decidability results are achieved by defining a generalization of the conjunctive query answering problem, called HOCQA (Higher Order Conjunctive Query Answering), that can be instantiated to the most wide-spread ABox reasoning tasks. We also present a \ke\space based procedure for calculating the answer set from $\mathcal{DL}{\mathbf{D}}{4,!\times}$ knowledge bases and higher order $\mathcal{DL}{\mathbf{D}}{4,!\times}$ conjunctive queries, thus providing means for reasoning on several well-known ABox reasoning tasks. Our calculus extends a previously introduced \ke\space based decision procedure for the CQA problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (6)

Summary

We haven't generated a summary for this paper yet.