Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient estimation and inference for the signed $β$-model in directed signed networks (2208.00137v4)

Published 30 Jul 2022 in stat.ME and cs.SI

Abstract: This paper proposes a novel signed $\beta$-model for directed signed network, which is frequently encountered in application domains but largely neglected in literature. The proposed signed $\beta$-model decomposes a directed signed network as the difference of two unsigned networks and embeds each node with two latent factors for in-status and out-status. The presence of negative edges leads to a non-concave log-likelihood, and a one-step estimation algorithm is developed to facilitate parameter estimation, which is efficient both theoretically and computationally. We also develop an inferential procedure for pairwise and multiple node comparisons under the signed $\beta$-model, which fills the void of lacking uncertainty quantification for node ranking. Theoretical results are established for the coverage probability of confidence interval, as well as the false discovery rate (FDR) control for multiple node comparison. The finite sample performance of the signed $\beta$-model is also examined through extensive numerical experiments on both synthetic and real-life networks.

Summary

We haven't generated a summary for this paper yet.