Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EEG2Mel: Reconstructing Sound from Brain Responses to Music (2207.13845v1)

Published 28 Jul 2022 in cs.SD, cs.CV, cs.IR, and eess.AS

Abstract: Information retrieval from brain responses to auditory and visual stimuli has shown success through classification of song names and image classes presented to participants while recording EEG signals. Information retrieval in the form of reconstructing auditory stimuli has also shown some success, but here we improve on previous methods by reconstructing music stimuli well enough to be perceived and identified independently. Furthermore, deep learning models were trained on time-aligned music stimuli spectrum for each corresponding one-second window of EEG recording, which greatly reduces feature extraction steps needed when compared to prior studies. The NMED-Tempo and NMED-Hindi datasets of participants passively listening to full length songs were used to train and validate Convolutional Neural Network (CNN) regressors. The efficacy of raw voltage versus power spectrum inputs and linear versus mel spectrogram outputs were tested, and all inputs and outputs were converted into 2D images. The quality of reconstructed spectrograms was assessed by training classifiers which showed 81% accuracy for mel-spectrograms and 72% for linear spectrograms (10% chance accuracy). Lastly, reconstructions of auditory music stimuli were discriminated by listeners at an 85% success rate (50% chance) in a two-alternative match-to-sample task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (3)

Summary

We haven't generated a summary for this paper yet.