On restricted projections to planes in $\mathbb{R}^3$ (2207.13844v2)
Abstract: Let $\gamma:[0,1]\rightarrow \mathbb{S}{2}$ be a non-degenerate curve in $\mathbb{R}3$, that is to say, $\det\big(\gamma(\theta),\gamma'(\theta),\gamma"(\theta)\big)\neq 0$. For each $\theta\in[0,1]$, let $V_\theta=\gamma(\theta)\perp$ and let $\pi_\theta:\mathbb{R}3\rightarrow V_\theta$ be the orthogonal projections. We prove that if $A\subset \mathbb{R}3$ is a Borel set, then for a.e. $\theta\in [0,1]$ we have $\text{dim}(\pi_\theta(A))=\min{2,\text{dim} A}$. More generally, we prove an exceptional set estimate. For $A\subset\mathbb{R}3$ and $0\le s\le 2$, define $E_s(A):={\theta\in[0,1]: \text{dim}(\pi_\theta(A))<s\}$. We have $\text{dim}(E_s(A))\le 1+s-\text{dim}(A)$. We also prove that if $\text{dim}(A)\>2$, then for a.e. $\theta\in[0,1]$ we have $\mathcal{H}2(\pi_\theta (A))>0$.
- J. Bourgain and C. Demeter. The proof of the ℓ2superscriptℓ2\ell^{2}roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT decoupling conjecture. Ann. of Math., pages 351–389, 2015.
- C. Chen. Restricted families of projections and random subspaces. Real Anal. Exchange, 43(2):347–358, 2018.
- Small cap decouplings. Geom. Funct. Anal., 30(4):989–1062, 2020.
- X. Du and R. Zhang. Sharp L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT estimates of the Schrödinger maximal function in higher dimensions. Ann. of Math. (2), 189(3):837–861, 2019.
- K. Fässler and T. Orponen. On restricted families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Proc. Lond. Math. Soc., 109(2):353–381, 2014.
- Sharp superlevel set estimates for small cap decouplings of the parabola. arXiv preprint arXiv:2107.13139, 2021.
- S. Gan and S. Wu. Square function estimates for conical regions. arXiv preprint arXiv:2203.12155, 2022.
- A short proof of ℓ2superscriptℓ2\ell^{2}roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT decoupling for the moment curve. Amer. J. Math., 143(6):1983–1998, 2021.
- On Falconer’s distance set problem in the plane. Invent. Math., 219(3):779–830, 2020.
- Improved decoupling for the parabola. arXiv preprint arXiv:2009.07953, 2020.
- Incidence estimates for well spaced tubes. Geom. Funct. Anal., 29(6):1844–1863, 2019.
- A sharp square function estimate for the cone in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Ann. of Math., 192(2):551–581, 2020.
- T. L. J. Harris. Improved bounds for restricted projection families via weighted fourier restriction. arXiv preprint arXiv:1911.00615, 2019.
- T. L. J. Harris. Restricted families of projections onto planes: the general case of nonvanishing geodesic curvature. arXiv preprint arXiv:2107.14701, 2021.
- Hausdorff dimension and non-degenerate families of projections. J. Geom. Anal., 24(4):2020–2034, 2014.
- One-dimensional families of projections. Nonlinearity, 21(3):453, 2008.
- A Marstrand-type restricted projection theorem in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. arXiv preprint arXiv:1708.04859, 2017.
- J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc., 3(1):257–302, 1954.
- P. Mattila. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. AI Math, 1(2):227–244, 1975.
- P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
- D. Oberlin and R. Oberlin. Application of a fourier restriction theorem to certain families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Geom. Anal., 25(3):1476–1491, 2015.
- T. Orponen. Hausdorff dimension estimates for restricted families of projections in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Adv. Math., 275:147–183, 2015.
- T. Orponen and L. Venieri. Improved bounds for restricted families of projections to planes in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Int. Math. Res. Not. IMRN, 2020(19):5797–5813, 2020.
- M. Pramanik and A. Seeger. Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT regularity of averages over curves and bounds for associated maximal operators. Amer. J. Math., 129(1):61–103, 2005.
- A Furstenberg-type problem for circles, and a Kaufman-type restricted projection theorem in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. arXiv preprint arXiv:2207.02259, 2022.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.