Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative propagation of chaos for mean field Markov decision process with common noise (2207.12738v1)

Published 26 Jul 2022 in math.OC and math.PR

Abstract: We investigate propagation of chaos for mean field Markov Decision Process with common noise (CMKV-MDP), and when the optimization is performed over randomized open-loop controls on infinite horizon. We first state a rate of convergence of order $M_N\gamma$, where $M_N$ is the mean rate of convergence in Wasserstein distance of the empirical measure, and $\gamma \in (0,1]$ is an explicit constant, in the limit of the value functions of $N$-agent control problem with asymmetric open-loop controls, towards the value function of CMKV-MDP. Furthermore, we show how to explicitly construct $(\epsilon+\mathcal{O}(M_N\gamma))$-optimal policies for the $N$-agent model from $\epsilon$-optimal policies for the CMKV-MDP. Our approach relies on sharp comparison between the BeLLMan operators in the $N$-agent problem and the CMKV-MDP, and fine coupling of empirical measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.