Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Federated Semi-Supervised Domain Adaptation via Knowledge Transfer (2207.10727v2)

Published 21 Jul 2022 in cs.LG

Abstract: Given the rapidly changing machine learning environments and expensive data labeling, semi-supervised domain adaptation (SSDA) is imperative when the labeled data from the source domain is statistically different from the partially labeled data from the target domain. Most prior SSDA research is centrally performed, requiring access to both source and target data. However, data in many fields nowadays is generated by distributed end devices. Due to privacy concerns, the data might be locally stored and cannot be shared, resulting in the ineffectiveness of existing SSDA research. This paper proposes an innovative approach to achieve SSDA over multiple distributed and confidential datasets, named by Federated Semi-Supervised Domain Adaptation (FSSDA). FSSDA integrates SSDA with federated learning based on strategically designed knowledge distillation techniques, whose efficiency is improved by performing source and target training in parallel. Moreover, FSSDA controls the amount of knowledge transferred across domains by properly selecting a key parameter, i.e., the imitation parameter. Further, the proposed FSSDA can be effectively generalized to multi-source domain adaptation scenarios. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of FSSDA design.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.