Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using attention methods to predict judicial outcomes (2207.08823v2)

Published 18 Jul 2022 in cs.LG, cs.AI, cs.CL, and cs.CY

Abstract: Legal Judgment Prediction is one of the most acclaimed fields for the combined area of NLP, AI, and Law. By legal prediction we mean an intelligent systems capable to predict specific judicial characteristics, such as judicial outcome, a judicial class, predict an specific case. In this research, we have used AI classifiers to predict judicial outcomes in the Brazilian legal system. For this purpose, we developed a text crawler to extract data from the official Brazilian electronic legal systems. These texts formed a dataset of second-degree murder and active corruption cases. We applied different classifiers, such as Support Vector Machines and Neural Networks, to predict judicial outcomes by analyzing textual features from the dataset. Our research showed that Regression Trees, Gated Recurring Units and Hierarchical Attention Networks presented higher metrics for different subsets. As a final goal, we explored the weights of one of the algorithms, the Hierarchical Attention Networks, to find a sample of the most important words used to absolve or convict defendants.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (4)

Summary

We haven't generated a summary for this paper yet.