Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Sketches for Robust Regression with Importance Sampling (2207.07822v1)

Published 16 Jul 2022 in cs.LG and cs.DS

Abstract: We introduce data structures for solving robust regression through stochastic gradient descent (SGD) by sampling gradients with probability proportional to their norm, i.e., importance sampling. Although SGD is widely used for large scale machine learning, it is well-known for possibly experiencing slow convergence rates due to the high variance from uniform sampling. On the other hand, importance sampling can significantly decrease the variance but is usually difficult to implement because computing the sampling probabilities requires additional passes over the data, in which case standard gradient descent (GD) could be used instead. In this paper, we introduce an algorithm that approximately samples $T$ gradients of dimension $d$ from nearly the optimal importance sampling distribution for a robust regression problem over $n$ rows. Thus our algorithm effectively runs $T$ steps of SGD with importance sampling while using sublinear space and just making a single pass over the data. Our techniques also extend to performing importance sampling for second-order optimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sepideh Mahabadi (29 papers)
  2. David P. Woodruff (206 papers)
  3. Samson Zhou (76 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.