Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

pathGCN: Learning General Graph Spatial Operators from Paths (2207.07408v1)

Published 15 Jul 2022 in cs.LG

Abstract: Graph Convolutional Networks (GCNs), similarly to Convolutional Neural Networks (CNNs), are typically based on two main operations - spatial and point-wise convolutions. In the context of GCNs, differently from CNNs, a pre-determined spatial operator based on the graph Laplacian is often chosen, allowing only the point-wise operations to be learnt. However, learning a meaningful spatial operator is critical for developing more expressive GCNs for improved performance. In this paper we propose pathGCN, a novel approach to learn the spatial operator from random paths on the graph. We analyze the convergence of our method and its difference from existing GCNs. Furthermore, we discuss several options of combining our learnt spatial operator with point-wise convolutions. Our extensive experiments on numerous datasets suggest that by properly learning both the spatial and point-wise convolutions, phenomena like over-smoothing can be inherently avoided, and new state-of-the-art performance is achieved.

Citations (24)

Summary

We haven't generated a summary for this paper yet.