Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Online Data-Driven Method for Microgrid Secondary Voltage and Frequency Control with Ensemble Koopman Modeling (2207.05204v1)

Published 11 Jul 2022 in eess.SY and cs.SY

Abstract: Low inertia, nonlinearity and a high level of uncertainty (varying topologies and operating conditions) pose challenges to microgrid (MG) systemwide operation. This paper proposes an online adaptive Koopman operator optimal control (AKOOC) method for MG secondary voltage and frequency control. Unlike typical data-driven methods that are data-hungry and lack guaranteed stability, the proposed AKOOC requires no warm-up training yet with guaranteed bounded-input-bounded-output (BIBO) stability and even asymptotical stability under some mild conditions. The proposed AKOOC is developed based on an ensemble Koopman state space modeling with full basis functions that combines both linear and nonlinear bases without the need of event detection or switching. An iterative learning method is also developed to exploit model parameters, ensuring the effectiveness and the adaptiveness of the designed control. Simulation studies in the 4-bus (with detailed inner-loop control) MG system and the 34-bus MG system showed improved modeling accuracy and control, verifying the effectiveness of the proposed method subject to various changes of operating conditions even with time delay, measurement noise, and missing measurements.

Citations (17)

Summary

We haven't generated a summary for this paper yet.