Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual-Loop Robust Control of Biased Koopman Operator Model by Noisy Data of Nonlinear Systems (2401.08536v2)

Published 16 Jan 2024 in eess.SY and cs.SY

Abstract: The Koopman operator approach for data-driven control design of a nonlinear system is on the rise because of its capability to capture the behaviours of global dynamics. However, the measurement noises of inputs and outputs will bias the Koopman model identification and cause model mismatch from the actual nonlinear dynamics. The current work evaluates the bounds of the noise-induced model bias of the Koopman operator model and proposes a data-driven robust dual-loop control framework (Koopman based robust control-KROC) for the biased model. First, the model mismatch is found bounded under radial basis functions (RBF) and the bounded noises, and the bound of model mismatch is assessed. Second, the pitfalls of linear quadratic Gaussian (LQG) control based on the biased Koopman model of Van Der Pol oscillator are shown. Motivated from the pitfalls, the dual-loop control is proposed, which consist of an observer-based state-feedback control based on the nominal Koopman model and an additional robust loop to compensate model mismatch. A linear matrix inequality (LMI) is derived, which can guarantee robust stability and performance under bounded noises for the finite-dimensional Koopman operator model. Finally, the proposed framework is implemented to a nonlinear Van Der Pol oscillator to demonstrate enhanced control performance by the dual-loop robust control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013.
  2. B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Proceedings of the national academy of sciences of the united states of america, vol. 17, no. 5, p. 315, 1931.
  3. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern koopman theory for dynamical systems,” arXiv preprint arXiv:2102.12086, 2021.
  4. P. Bevanda, S. Sosnowski, and S. Hirche, “Koopman operator dynamical models: Learning, analysis and control,” Annual Reviews in Control, vol. 52, pp. 197–212, 2021.
  5. D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Data-driven control of soft robots using koopman operator theory,” IEEE Transactions on Robotics, vol. 37, no. 3, pp. 948–961, 2020.
  6. G. Mamakoukas, M. L. Castano, X. Tan, and T. D. Murphey, “Derivative-based koopman operators for real-time control of robotic systems,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2173–2192, 2021.
  7. J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, 2016.
  8. G. Hagen and I. Mezic, “Spillover stabilization in finite-dimensional control and observer design for dissipative evolution equations,” SIAM Journal on Control and Optimization, vol. 42, no. 2, pp. 746–768, 2003.
  9. M. J. Balas, “Toward a more practical control theory for distributed parameter systems,” in Control and Dynamic Systems.   Elsevier, 1982, vol. 18, pp. 361–421.
  10. S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, “Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition,” Experiments in Fluids, vol. 57, pp. 1–19, 2016.
  11. M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “De-biasing the dynamic mode decomposition for applied koopman spectral analysis of noisy datasets,” Theoretical and Computational Fluid Dynamics, vol. 31, pp. 349–368, 2017.
  12. M. Haseli and J. Cortés, “Approximating the koopman operator using noisy data: noise-resilient extended dynamic mode decomposition,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 5499–5504.
  13. M. Wanner and I. Mezic, “Robust approximation of the stochastic koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 21, no. 3, pp. 1930–1951, 2022.
  14. K. Zhou and Z. Ren, “A New Controller Architecture for High Performance, Robust, and Fault-Tolerant Control,” IEEE Transactions on Automatic Control, vol. 46, no. 10, pp. 1613–1618, 2001.
  15. X. Chen, K. Zhou, and Y. Tan, “Revisit of LQG Control – a New Paradigm with Recovered Robustness,” in Proceedings of 58th IEEE Conference on Decision and Control, Nice, France, December 2019, pp. 5819–5825.
  16. T. He, G. G. Zhu, and X. Chen, “A two-step LMI scheme for H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control design,” in 2020 American Control Conference (ACC), 2020, pp. 1545–1550.
  17. T. He, X. Chen, and G. G. Zhu, “A dual-loop robust control scheme with performance separation: Theory and experimental validation,” IEEE Transactions on Industrial Electronics, pp. 1–1, 2022.
  18. W. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—an overview,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.
  19. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approximation of the koopman operator: Extending dynamic mode decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015.
  20. M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.
  21. G. W. Stewart, “On the perturbation of pseudo-inverses, projections and linear least squares problems,” SIAM review, vol. 19, no. 4, pp. 634–662, 1977.
  22. X. Wei, N. Chen, C. Deng, X. Liu, and M. Tang, “Composite stratified anti-disturbance control for a class of mimo discrete-time systems with nonlinearity,” International Journal of Robust and Nonlinear Control, vol. 22, no. 4, pp. 453–472, 2012.
Citations (1)

Summary

We haven't generated a summary for this paper yet.