Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

The complement of enhanced power graph of a finite group (2207.04641v1)

Published 11 Jul 2022 in math.GR and math.CO

Abstract: The enhanced power graph $\mathcal{P}_E(G)$ of a finite group $G$ is the simple undirected graph whose vertex set is $G$ and two distinct vertices $x, y$ are adjacent if $x, y \in \langle z \rangle$ for some $z \in G$. In this article, we give an affirmative answer of the question posed by Cameron [6] which states that: Is it true that the complement of the enhanced power graph $\bar{\mathcal{P}_E(G)}$ of a non-cyclic group $G$ has only one connected component apart from isolated vertices? We classify all finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G)}$ is bipartite. We show that the graph $\bar{\mathcal{P}_E(G)}$ is weakly perfect. Further, we study the subgraph $\bar{\mathcal{P}_E(G*)}$ of $\bar{\mathcal{P}_E(G)}$ induced by all the non-isolated vertices of $\bar{\mathcal{P}_E(G)}$. We classify all finite groups $G$ such that the graph is $\bar{\mathcal{P}_E(G*)}$ is unicyclic and pentacyclic. We prove the non-existence of finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G*)}$ is bicyclic, tricyclic or tetracyclic. Finally, we characterize all finite groups $G$ such that the graph $\bar{\mathcal{P}_E(G*)}$ is outerplanar, planar, projective-planar and toroidal, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)