Papers
Topics
Authors
Recent
2000 character limit reached

A stochastic Galerkin method with adaptive time-stepping for the Navier-Stokes equations

Published 10 Jul 2022 in math.NA, cs.NA, and math.PR | (2207.04513v1)

Abstract: We study the time-dependent Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion, and we use the stochastic Galerkin method to extend the methodology from [D. A. Kay et al., \textit{SIAM J. Sci. Comput.} 32(1), pp. 111--128, 2010] into this framework. For the resulting stochastic problem, we explore the properties of the resulting stochastic solutions, and we also compare the results with that of Monte Carlo and stochastic collocation. Since the time-stepping scheme is fully implicit, we also propose strategies for efficient solution of the stochastic Galerkin linear systems using a preconditioned Krylov subspace method. The effectiveness of the stochastic Galerkin method is illustrated by numerical experiments.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.