Papers
Topics
Authors
Recent
2000 character limit reached

On Surrogate Learning for Linear Stability Assessment of Navier-Stokes Equations with Stochastic Viscosity

Published 28 Feb 2021 in math.NA, cs.NA, and math.PR | (2103.00622v3)

Abstract: We study linear stability of solutions to the Navier\textendash Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a~stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.