Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian multi-objective optimization for stochastic simulators: an extension of the Pareto Active Learning method (2207.03842v2)

Published 8 Jul 2022 in math.OC and stat.ML

Abstract: This article focuses on the multi-objective optimization of stochastic simulators with high output variance, where the input space is finite and the objective functions are expensive to evaluate. We rely on Bayesian optimization algorithms, which use probabilistic models to make predictions about the functions to be optimized. The proposed approach is an extension of the Pareto Active Learning (PAL) algorithm for the estimation of Pareto-optimal solutions that makes it suitable for the stochastic setting. We named it Pareto Active Learning for Stochastic Simulators (PALS). The performance of PALS is assessed through numerical experiments over a set of bi-dimensional, bi-objective test problems. PALS exhibits superior performance when compared to other scalarization-based and random-search approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.