A Robust Multi-Objective Bayesian Optimization Framework Considering Input Uncertainty (2202.12848v1)
Abstract: Bayesian optimization is a popular tool for data-efficient optimization of expensive objective functions. In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account to find a set of robust solutions. While this is an active topic in single-objective Bayesian optimization, it is less investigated in the multi-objective case. We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty. We propose a robust Gaussian Process model to infer the Bayes risk criterion to quantify robustness, and we develop a two-stage Bayesian optimization process to search for a robust Pareto frontier. The complete framework supports various distributions of the input uncertainty and takes full advantage of parallel computing. We demonstrate the effectiveness of the framework through numerical benchmarks.