Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cover Your Bases: Asymptotic Distributions of the Profile Likelihood Ratio When Constraining Effective Field Theories in High-Energy Physics (2207.01350v2)

Published 4 Jul 2022 in physics.data-an, hep-ex, and hep-ph

Abstract: We investigate the asymptotic distribution of the profile likelihood ratio (PLR) when constraining effective field theories (EFTs) and show that Wilks' theorem is often violated, meaning that we should not assume the PLR to follow a $\chi2$-distribution. We derive the correct asymptotic distributions when either one or two real EFT couplings modulate observable cross sections with a purely linear or quadratic dependence. We then discover that when both the linear and quadratic terms contribute, the PLR distribution does not have a simple form. In this case we provide a partly-numerical solution for the one-parameter case. Using a novel approach, we find that the constants which define our asymptotic distributions may be obtained experimentally using a profile of the Asimov likelihood contour. Our results may be immediately used to obtain the correct coverage when deriving real-world EFT constraints using the PLR as a test-statistic.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.