Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Folding over Neural Networks (2207.01090v2)

Published 3 Jul 2022 in cs.PL and cs.LG

Abstract: Neural networks are typically represented as data structures that are traversed either through iteration or by manual chaining of method calls. However, a deeper analysis reveals that structured recursion can be used instead, so that traversal is directed by the structure of the network itself. This paper shows how such an approach can be realised in Haskell, by encoding neural networks as recursive data types, and then their training as recursion scheme patterns. In turn, we promote a coherent implementation of neural networks that delineates between their structure and semantics, allowing for compositionality in both how they are built and how they are trained.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com