Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Faro: A framework for measuring the scientific performance of petascale Rubin Observatory data products (2206.15447v1)

Published 30 Jun 2022 in astro-ph.IM

Abstract: The Vera C. Rubin Observatory will advance many areas of astronomy over the next decade with its unique wide-fast-deep multi-color imaging survey, the Legacy Survey of Space and Time (LSST). The LSST will produce approximately 20TB of raw data per night, which will be automatically processed by the LSST Science Pipelines to generate science-ready data products -- processed images, catalogs and alerts. To ensure that these data products enable transformative science with LSST, stringent requirements have been placed on their quality and scientific fidelity, for example on image quality and depth, astrometric and photometric performance, and object recovery completeness. In this paper we introduce faro, a framework for automatically and efficiently computing scientific performance metrics on the LSST data products for units of data of varying granularity, ranging from single-detector to full-survey summary statistics. By measuring and monitoring metrics, we are able to evaluate trends in algorithmic performance and conduct regression testing during development, compare the performance of one algorithm against another, and verify that the LSST data products will meet performance requirements by comparing to specifications. We present initial results using faro to characterize the performance of the data products produced on simulated and precursor data sets, and discuss plans to use faro to verify the performance of the LSST commissioning data products.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube