Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feynman parameter integration through differential equations (2206.14790v1)

Published 29 Jun 2022 in hep-ph and hep-th

Abstract: We present a new method for numerically computing generic multi-loop Feynman integrals. The method relies on an iterative application of Feynman's trick for combining two propagators. Each application of Feynman's trick introduces a simplified Feynman integral topology which depends on a Feynman parameter that should be integrated over. For each integral family, we set up a system of differential equations which we solve in terms of a piecewise collection of generalized series expansions in the Feynman parameter. These generalized series expansions can be efficiently integrated term by term, and segment by segment. This approach leads to a fully algorithmic method for computing Feynman integrals from differential equations, which does not require the manual determination of boundary conditions. Furthermore, the most complicated topology that appears in the method often has less master integrals than the original one. We illustrate the strength of our method with a five-point two-loop integral family.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.