Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Orthogonal decomposition of multivariate densities in Bayes spaces and its connection with copulas (2206.13898v1)

Published 28 Jun 2022 in math.ST and stat.TH

Abstract: Bayes spaces were initially designed to provide a geometric framework for the modeling and analysis of distributional data. It has recently come to light that this methodology can be exploited to provide an orthogonal decomposition of bivariate probability distributions into an independent and an interaction part. In this paper, new insights into these results are provided by reformulating them using Hilbert space theory and a multivariate extension is developed using a distributional analog of the Hoeffding-Sobol identity. A connection between the resulting decomposition of a multivariate density and its copula-based representation is also provided.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube