Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PST: Plant segmentation transformer for 3D point clouds of rapeseed plants at the podding stage (2206.13082v3)

Published 27 Jun 2022 in cs.CV

Abstract: Segmentation of plant point clouds to obtain high-precise morphological traits is essential for plant phenotyping. Although the fast development of deep learning has boosted much research on segmentation of plant point clouds, previous studies mainly focus on the hard voxelization-based or down-sampling-based methods, which are limited to segmenting simple plant organs. Segmentation of complex plant point clouds with a high spatial resolution still remains challenging. In this study, we proposed a deep learning network plant segmentation transformer (PST) to achieve the semantic and instance segmentation of rapeseed plants point clouds acquired by handheld laser scanning (HLS) with the high spatial resolution, which can characterize the tiny siliques as the main traits targeted. PST is composed of: (i) a dynamic voxel feature encoder (DVFE) to aggregate the point features with the raw spatial resolution; (ii) the dual window sets attention blocks to capture the contextual information; and (iii) a dense feature propagation module to obtain the final dense point feature map. The results proved that PST and PST-PointGroup (PG) achieved superior performance in semantic and instance segmentation tasks. For the semantic segmentation, the mean IoU, mean Precision, mean Recall, mean F1-score, and overall accuracy of PST were 93.96%, 97.29%, 96.52%, 96.88%, and 97.07%, achieving an improvement of 7.62%, 3.28%, 4.8%, 4.25%, and 3.88% compared to the second-best state-of-the-art network PAConv. For instance segmentation, PST-PG reached 89.51%, 89.85%, 88.83% and 82.53% in mCov, mWCov, mPerc90, and mRec90, achieving an improvement of 2.93%, 2.21%, 1.99%, and 5.9% compared to the original PG. This study proves that the deep-learning-based point cloud segmentation method has a great potential for resolving dense plant point clouds with complex morphological traits.

Citations (25)

Summary

We haven't generated a summary for this paper yet.