Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Leaf Segmentation Using Synthetic Data (1807.10931v3)

Published 28 Jul 2018 in cs.CV

Abstract: Automated segmentation of individual leaves of a plant in an image is a prerequisite to measure more complex phenotypic traits in high-throughput phenotyping. Applying state-of-the-art machine learning approaches to tackle leaf instance segmentation requires a large amount of manually annotated training data. Currently, the benchmark datasets for leaf segmentation contain only a few hundred labeled training images. In this paper, we propose a framework for leaf instance segmentation by augmenting real plant datasets with generated synthetic images of plants inspired by domain randomisation. We train a state-of-the-art deep learning segmentation architecture (Mask-RCNN) with a combination of real and synthetic images of Arabidopsis plants. Our proposed approach achieves 90% leaf segmentation score on the A1 test set outperforming the-state-of-the-art approaches for the CVPPP Leaf Segmentation Challenge (LSC). Our approach also achieves 81% mean performance over all five test datasets.

Citations (103)

Summary

We haven't generated a summary for this paper yet.