Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breast Cancer Classification using Deep Learned Features Boosted with Handcrafted Features (2206.12815v2)

Published 26 Jun 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Breast cancer is one of the leading causes of death among women across the globe. It is difficult to treat if detected at advanced stages, however, early detection can significantly increase chances of survival and improves lives of millions of women. Given the widespread prevalence of breast cancer, it is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis. Artificial intelligence research community in coordination with medical practitioners are developing such frameworks to automate the task of detection. With the surge in research activities coupled with availability of large datasets and enhanced computational powers, it expected that AI framework results will help even more clinicians in making correct predictions. In this article, a novel framework for classification of breast cancer using mammograms is proposed. The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features including HOG (Histogram of Oriented Gradients) and LBP (Local Binary Pattern). The obtained results on CBIS-DDSM dataset exceed state of the art.

Citations (26)

Summary

We haven't generated a summary for this paper yet.