Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI (2404.03892v3)

Published 5 Apr 2024 in cs.CV, cs.AI, cs.LG, and eess.IV

Abstract: The Deep learning (DL) models for diagnosing breast cancer from mammographic images often operate as "black boxes", making it difficult for healthcare professionals to trust and understand their decision-making processes. The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer using the CBIS-DDSM dataset. The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations and transfer learning using pre-trained networks such as VGG-16, Inception-V3 and ResNet was employed. A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions, highlighted by utilizing the Hausdorff measure to assess the alignment between AI-generated explanations and expert annotations quantitatively. This approach is critical for XAI in promoting trustworthiness and ethical fairness in AI-assisted diagnostics. The findings from our research illustrate the effective collaboration between CNNs and XAI in advancing diagnostic methods for breast cancer, thereby facilitating a more seamless integration of advanced AI technologies within clinical settings. By enhancing the interpretability of AI driven decisions, this work lays the groundwork for improved collaboration between AI systems and medical practitioners, ultimately enriching patient care. Furthermore, the implications of our research extended well beyond the current methodologies. It encourages further research into how to combine multimodal data and improve AI explanations to meet the needs of clinical practice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. I. A. for Research on Cancer), “Breast cancer iarc.” https://www.iarc.who.int/cancer-type/breast-cancer. [Accessed 23-Jun-2023].
  2. M. Moghbel and S. Mashohor, “A review of computer assisted detection/diagnosis (cad) in breast thermography for breast cancer detection,” Artificial Intelligence Review, vol. 39, no. 4, pp. 305–313, 2013.
  3. U. Sajid, R. A. Khan, S. M. Shah, and S. Arif, “Breast cancer classification using deep learned features boosted with handcrafted features,” Biomedical Signal Processing and Control, vol. 86, p. 105353, 2023.
  4. S. M. Shah, R. A. Khan, S. Arif, and U. Sajid, “Artificial intelligence for breast cancer analysis: Trends & directions,” Computers in Biology and Medicine, p. 105221, 2022.
  5. M. M. Bejani and M. Ghatee, “A systematic review on overfitting control in shallow and deep neural networks,” Artificial Intelligence Review, vol. 54, no. 8, pp. 6391–6438, 2021.
  6. J.-Z. Cheng, D. Ni, Y.-H. Chou, J. Qin, C.-M. Tiu, Y.-C. Chang, C.-S. Huang, D. Shen, and C.-M. Chen, “Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans,” Scientific reports, vol. 6, no. 1, pp. 1–13, 2016.
  7. A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,” Information fusion, vol. 58, pp. 82–115, 2020.
  8. G. Yang, Q. Ye, and J. Xia, “Unbox the black-box for the medical explainable ai via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond,” Information Fusion, vol. 77, pp. 29–52, 2022.
  9. A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable deep learning models in medical image analysis,” Journal of Imaging, vol. 6, no. 6, p. 52, 2020.
  10. S. M. Shah and R. A. Khan, “Secondary use of electronic health record: Opportunities and challenges,” IEEE Access, vol. 8, pp. 136947–136965, 2020.
  11. F. Emmert-Streib, O. Yli-Harja, and M. Dehmer, “Explainable artificial intelligence and machine learning: A reality rooted perspective,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 10, no. 6, p. e1368, 2020.
  12. J. A. Recio-García, B. Díaz-Agudo, and V. Pino-Castilla, “Cbr-lime: a case-based reasoning approach to provide specific local interpretable model-agnostic explanations,” in Case-Based Reasoning Research and Development: 28th International Conference, ICCBR 2020, Salamanca, Spain, June 8–12, 2020, Proceedings 28, pp. 179–194, Springer, 2020.
  13. E. M. Kenny, C. Ford, M. Quinn, and M. T. Keane, “Explaining black-box classifiers using post-hoc explanations-by-example: The effect of explanations and error-rates in xai user studies,” Artificial Intelligence, vol. 294, p. 103459, 2021.
  14. K. Sokol and P. Flach, “Explainability fact sheets: A framework for systematic assessment of explainable approaches,” in Proceedings of the 2020 conference on fairness, accountability, and transparency, pp. 56–67, 2020.
  15. S. Nasir, R. A. Khan, and S. Bai, “Ethical framework for harnessing the power of ai in healthcare and beyond,” IEEE Access, vol. 12, pp. 31014–31035, 2024.
  16. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in neural information processing systems, vol. 30, 2017.
  17. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.
  18. M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?” explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135–1144, 2016.
  19. A. Moncada-Torres, M. C. van Maaren, M. P. Hendriks, S. Siesling, and G. Geleijnse, “Explainable machine learning can outperform cox regression predictions and provide insights in breast cancer survival,” Scientific reports, vol. 11, no. 1, p. 6968, 2021.
  20. F. Silva-Aravena, H. Núñez Delafuente, J. H. Gutiérrez-Bahamondes, and J. Morales, “A Hybrid Algorithm of ML and XAI to Prevent Breast Cancer: A Strategy to Support Decision Making,” Cancers, vol. 15, no. 9, p. 2443, 2023.
  21. F. Wang, D. Wang, Y. Xu, H. Jiang, Y. Liu, and J. Zhang, “Potential of the non-contrast-enhanced chest ct radiomics to distinguish molecular subtypes of breast cancer: A retrospective study,” Frontiers In Oncology, vol. 12, p. 848726, 2022.
  22. R. Rodríguez-Pérez and J. Bajorath, “Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values,” Journal of Medicinal Chemistry, vol. 63, no. 16, pp. 8761–8777, 2019.
  23. M. Masud, A. E. Eldin Rashed, and M. S. Hossain, “Convolutional neural network-based models for diagnosis of breast cancer,” Neural Computing and Applications, pp. 1–12, 2020.
  24. F. Dong, R. She, C. Cui, S. Shi, X. Hu, J. Zeng, H. Wu, J. Xu, and Y. Zhang, “One step further into the blackbox: a pilot study of how to build more confidence around an ai-based decision system of breast nodule assessment in 2d ultrasound,” European radiology, vol. 31, pp. 4991–5000, 2021.
  25. Y. J. Suh, J. Jung, and B.-J. Cho, “Automated breast cancer detection in digital mammograms of various densities via deep learning,” Journal of personalized medicine, vol. 10, no. 4, p. 211, 2020.
  26. M. Lou, R. Wang, Y. Qi, W. Zhao, C. Xu, J. Meng, X. Deng, and Y. Ma, “Mgbn: Convolutional neural networks for automated benign and malignant breast masses classification,” Multimedia Tools and Applications, vol. 80, no. 17, pp. 26731–26750, 2021.
  27. J. Wang, Y. Zheng, J. Ma, X. Li, C. Wang, J. Gee, H. Wang, and W. Huang, “Information bottleneck-based interpretable multitask network for breast cancer classification and segmentation,” Medical Image Analysis, vol. 83, p. 102687, 2023.
  28. D. Kaplun, A. Krasichkov, P. Chetyrbok, N. Oleinikov, A. Garg, and H. S. Pannu, “Cancer cell profiling using image moments and neural networks with model agnostic explainability: A case study of breast cancer histopathological (breakhis) database,” Mathematics, vol. 9, no. 20, p. 2616, 2021.
  29. F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A dataset for breast cancer histopathological image classification,” Ieee transactions on biomedical engineering, vol. 63, no. 7, pp. 1455–1462, 2015.
  30. A. Rezazadeh, Y. Jafarian, and A. Kord, “Explainable ensemble machine learning for breast cancer diagnosis based on ultrasound image texture features,” Forecasting, vol. 4, no. 1, pp. 262–274, 2022.
  31. J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, and B. Séroussi, “Hierarchical visual case-based reasoning for supporting breast cancer therapy,” in 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), pp. 1–4, IEEE, 2019.
  32. J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, and B. Séroussi, “Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach,” Artificial intelligence in medicine, vol. 94, pp. 42–53, 2019.
  33. R. S. Lee, F. Gimenez, A. Hoogi, K. K. Miyake, M. Gorovoy, and D. L. Rubin, “A curated mammography data set for use in computer-aided detection and diagnosis research,” Scientific data, vol. 4, no. 1, pp. 1–9, 2017.
  34. L. Ahmed, M. M. Iqbal, H. Aldabbas, S. Khalid, Y. Saleem, and S. Saeed, “Images data practices for semantic segmentation of breast cancer using deep neural network,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–17, 2020.
  35. D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,” PeerJ, vol. 7, p. e6201, 2019.
  36. S. Montaha, S. Azam, A. K. M. R. H. Rafid, P. Ghosh, M. Hasan, M. Jonkman, F. De Boer, et al., “Breastnet18: a high accuracy fine-tuned vgg16 model evaluated using ablation study for diagnosing breast cancer from enhanced mammography images,” Biology, vol. 10, no. 12, p. 1347, 2021.
  37. M. Van Droogenbroeck and M. Buckley, “Morphological erosions and openings: fast algorithms based on anchors,” Journal of Mathematical Imaging and Vision, vol. 22, pp. 121–142, 2005.
  38. N. Hassan, S. Ullah, N. Bhatti, H. Mahmood, and M. Zia, “The retinex based improved underwater image enhancement,” Multimedia Tools and Applications, vol. 80, pp. 1839–1857, 2021.
  39. R. A. Khan, A. Crenn, A. Meyer, and S. Bouakaz, “A novel database of children’s spontaneous facial expressions (liris-cse),” Image and Vision Computing, vol. 83, pp. 61–69, 2019.
  40. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  41. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition. arxiv preprint arxiv: 151203385,” 2015.
  42. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
  43. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.
  44. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
  45. N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, “Convolutional neural networks for medical image analysis: Full training or fine tuning?,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1299–1312, 2016.
  46. M. R. Zafar and N. M. Khan, “Dlime: A deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems,” arXiv preprint arXiv:1906.10263, 2019.
  47. A. A. Taha and A. Hanbury, “An efficient algorithm for calculating the exact hausdorff distance,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 11, pp. 2153–2163, 2015.
  48. P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606, Spie, 1992.
  49. I.-S. Kim and W. McLean, “Computing the hausdorff distance between two sets of parametric curves,” Communications of the Korean Mathematical Society, vol. 28, no. 4, pp. 833–850, 2013.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Maryam Ahmed (1 paper)
  2. Tooba Bibi (1 paper)
  3. Rizwan Ahmed Khan (16 papers)
  4. Sidra Nasir (5 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com