Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Doubly-online changepoint detection for monitoring health status during sports activities (2206.11578v1)

Published 23 Jun 2022 in stat.AP, stat.CO, and stat.ME

Abstract: We provide an online framework for analyzing data recorded by smart watches during running activities. In particular, we focus on identifying variations in the behavior of one or more measurements caused by changes in physical condition, such as physical discomfort, periods of prolonged de-training, or even the malfunction of measuring devices. Our framework considers data as a sequence of running activities represented by multivariate time series of physical and biometric data. We combine classical changepoint detection models with an unknown number of components with Gaussian state space models to detect distributional changes between a sequence of activities. The model considers multiple sources of dependence due to the sequential nature of subsequent activities, the autocorrelation structure within each activity, and the contemporaneous dependence between different variables. We provide an online Expectation-Maximization (EM) algorithm involving a sequential Monte Carlo (SMC) approximation of changepoint predicted probabilities. As a byproduct of our model assumptions, our proposed approach processes sequences of multivariate time series in a doubly-online framework. While classical changepoint models detect changes between subsequent activities, the state space framework coupled with the online EM algorithm provides the additional benefit of estimating the real-time probability that a current activity is a changepoint.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.