Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the determination of uncertainties in parton densities (2206.10782v1)

Published 22 Jun 2022 in hep-ph, hep-ex, and nucl-th

Abstract: We review various methods used to estimate uncertainties in quantum correlation functions, such as parton distribution functions (PDFs). Using a toy model of a PDF, we compare the uncertainty estimates yielded by the traditional Hessian and data resampling methods, as well as from explicitly Bayesian analyses using nested sampling or hybrid Markov chain Monte Carlo techniques. We investigate how uncertainty bands derived from neural network approaches depend on details of the network training, and how they compare to the uncertainties obtained from more traditional methods with a specific underlying parametrization. Our results show that utilizing a neural network on a simplified example of PDF data has the potential to inflate uncertainties, in part due to the cross validation procedure that is generally used to avoid overfitting data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.