Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal graph realizations and graph Laplacian eigenvalues (2206.10010v1)

Published 20 Jun 2022 in math.OC and cs.DM

Abstract: For a regular polyhedron (or polygon) centered at the origin, the coordinates of the vertices are eigenvectors of the graph Laplacian for the skeleton of that polyhedron (or polygon) associated with the first (non-trivial) eigenvalue. In this paper, we generalize this relationship. For a given graph, we study the eigenvalue optimization problem of maximizing the first (non-trivial) eigenvalue of the graph Laplacian over non-negative edge weights. We show that the spectral realization of the graph using the eigenvectors corresponding to the solution of this problem, under certain assumptions, is a centered, unit-distance graph realization that has maximal total variance. This result gives a new method for generating unit-distance graph realizations and is based on convex duality. A drawback of this method is that the dimension of the realization is given by the multiplicity of the extremal eigenvalue, which is typically unknown prior to solving the eigenvalue optimization problem. Our results are illustrated with a number of examples.

Summary

We haven't generated a summary for this paper yet.