Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering based on the 1-Laplacian (2305.00462v1)

Published 30 Apr 2023 in cs.LG and cs.SI

Abstract: We propose a flexible framework for defining the 1-Laplacian of a hypergraph that incorporates edge-dependent vertex weights. These weights are able to reflect varying importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity than homogeneous hypergraphs. We then utilize the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian to cluster the vertices. From a theoretical standpoint based on an adequately defined normalized Cheeger cut, this procedure is expected to achieve higher clustering accuracy than that based on the traditional Laplacian. Indeed, we confirm that this is the case using real-world datasets to demonstrate the effectiveness of the proposed spectral clustering approach. Moreover, we show that for a special case within our framework, the corresponding hypergraph 1-Laplacian is equivalent to the 1-Laplacian of a related graph, whose eigenvectors can be computed more efficiently, facilitating the adoption on larger datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.