Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coded Caching via Federated Deep Reinforcement Learning in Fog Radio Access Networks (2206.09406v2)

Published 19 Jun 2022 in cs.IT and math.IT

Abstract: In this paper, the placement strategy design of coded caching in fog-radio access networks (F-RANs) is investigated. By considering time-variant content popularity, federated deep reinforcement learning is exploited to learn the placement strategy for our coded caching scheme. Initially, the placement problem is modeled as a Markov decision process (MDP) to capture the popularity variations and minimize the long-term content access delay. The reformulated sequential decision problem is solved by dueling double deep Q-learning (dueling DDQL). Then, federated learning is applied to learn the relatively low-dimensional local decision models and aggregate the global decision model, which alleviates over-consumption of bandwidth resources and avoids direct learning of a complex coded caching decision model with high-dimensional state space. Simulation results show that our proposed scheme outperforms the benchmarks in reducing the content access delay, keeping the performance stable, and trading off between the local caching gain and the global multicasting gain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.