On the exponent governing the correlation decay of the Airy$_1$ process (2206.08571v1)
Abstract: We study the decay of the covariance of the Airy$_1$ process, $\mathcal{A}_1$, a stationary stochastic process on $\mathbb{R}$ that arises as a universal scaling limit in the Kardar-Parisi-Zhang (KPZ) universality class. We show that the decay is super-exponential and determine the leading order term in the exponent by showing that $\textrm{Cov}(\mathcal{A}_1(0),\mathcal{A}_1(u))= e{-(\frac{4}{3}+o(1))u3}$ as $u\to\infty$. The proof employs a combination of probabilistic techniques and integrable probability estimates. The upper bound uses the connection of $\mathcal{A}_1$ to planar exponential last passage percolation and several new results on the geometry of point-to-line geodesics in the latter model which are of independent interest; while the lower bound is primarily analytic, using the Fredholm determinant expressions for the two point function of the Airy$_1$ process together with the FKG inequality.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.