Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Reduce Change Detection to Semantic Segmentation (2206.07557v2)

Published 15 Jun 2022 in cs.CV and cs.AI

Abstract: Change detection (CD) aims to identify changes that occur in an image pair taken different times. Prior methods devise specific networks from scratch to predict change masks in pixel-level, and struggle with general segmentation problems. In this paper, we propose a new paradigm that reduces CD to semantic segmentation which means tailoring an existing and powerful semantic segmentation network to solve CD. This new paradigm conveniently enjoys the mainstream semantic segmentation techniques to deal with general segmentation problems in CD. Hence we can concentrate on studying how to detect changes. We propose a novel and importance insight that different change types exist in CD and they should be learned separately. Based on it, we devise a module named MTF to extract the change information and fuse temporal features. MTF enjoys high interpretability and reveals the essential characteristic of CD. And most segmentation networks can be adapted to solve the CD problems with our MTF module. Finally, we propose C-3PO, a network to detect changes at pixel-level. C-3PO achieves state-of-the-art performance without bells and whistles. It is simple but effective and can be considered as a new baseline in this field. Our code is at https://github.com/DoctorKey/C-3PO.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guo-Hua Wang (11 papers)
  2. Bin-Bin Gao (35 papers)
  3. Chengjie Wang (178 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com