Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GCD-DDPM: A Generative Change Detection Model Based on Difference-Feature Guided DDPM (2306.03424v4)

Published 6 Jun 2023 in cs.CV

Abstract: Deep learning (DL)-based methods have recently shown great promise in bitemporal change detection (CD). Existing discriminative methods based on Convolutional Neural Networks (CNNs) and Transformers rely on discriminative representation learning for change recognition while struggling with exploring local and long-range contextual dependencies. As a result, it is still challenging to obtain fine-grained and robust CD maps in diverse ground scenes. To cope with this challenge, this work proposes a generative change detection model called GCD-DDPM to directly generate CD maps by exploiting the Denoising Diffusion Probabilistic Model (DDPM), instead of classifying each pixel into changed or unchanged categories. Furthermore, the Difference Conditional Encoder (DCE), is designed to guide the generation of CD maps by exploiting multi-level difference features. Leveraging the variational inference (VI) procedure, GCD-DDPM can adaptively re-calibrate the CD results through an iterative inference process, while accurately distinguishing subtle and irregular changes in diverse scenes. Finally, a Noise Suppression-based Semantic Enhancer (NSSE) is specifically designed to mitigate noise in the current step's change-aware feature representations from the CD Encoder. This refinement, serving as an attention map, can guide subsequent iterations while enhancing CD accuracy. Extensive experiments on four high-resolution CD datasets confirm the superior performance of the proposed GCD-DDPM. The code for this work will be available at https://github.com/udrs/GCD.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. J. Tian, S. Cui, and P. Reinartz, “Building change detection based on satellite stereo imagery and digital surface models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 406–417, 2013.
  2. X. Zhang, M.-O. Pun, and M. Liu, “Semi-supervised multi-temporal deep representation fusion network for landslide mapping from aerial orthophotos,” Remote Sensing, vol. 13, no. 4, p. 548, 2021.
  3. P. R. Coppin and M. E. Bauer, “Digital change detection in forest ecosystems with remote sensing imagery,” Remote sensing reviews, vol. 13, no. 3-4, pp. 207–234, 1996.
  4. H. Zhuang, K. Deng, H. Fan, and M. Yu, “Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 5, pp. 681–685, 2016.
  5. S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change vector analysis for multiple-change detection in vhr images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp. 3677–3693, 2019.
  6. Z. Lv, T. Liu, C. Shi, and J. A. Benediktsson, “Local histogram-based analysis for detecting land cover change using vhr remote sensing images,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 7, pp. 1284–1287, 2020.
  7. Z. Lv, X. Yang, X. Zhang, and J. A. Benediktsson, “Object-based sorted-histogram similarity measurement for detecting land cover change with vhr remote sensing images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  8. M. Zhang and W. Shi, “A feature difference convolutional neural network-based change detection method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7232–7246, OCT 2020.
  9. S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 574–586, JAN 2019.
  10. B. Hou, Q. Liu, H. Wang, and Y. Wang, “From w-net to cdgan: Bitemporal change detection via deep learning techniques,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1790–1802, MAR 2020.
  11. M. Yang, L. Jiao, F. Liu, B. Hou, and S. Yang, “Transferred deep learning-based change detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6960–6973, SEP 2019.
  12. Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change detection based on deep siamese convolutional network for optical aerial images,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1845–1849, 2017.
  13. R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese networks for change detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 4063–4067.
  14. S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected siamese network for change detection of vhr images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  15. C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang, and G. Liu, “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS Journal of photogrammetry and remote sensing, vol. 166, pp. 183–200, AUG 2020.
  16. Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
  17. Q. Zhu, X. Guo, W. Deng, S. Shi, Q. Guan, Y. Zhong, L. Zhang, and D. Li, “Land-use/land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery,” ISPRS Journal of photogrammetry and remote sensing, vol. 184, pp. 63–78, FEB 2022.
  18. X. Zhang, W. Yu, and M.-O. Pun, “Multilevel deformable attention-aggregated networks for change detection in bitemporal remote sensing imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–18, 2022.
  19. H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new dataset for remote sensing image change detection,” Remote Sensing, vol. 12, no. 10, p. 1662, 2020.
  20. Z. Zheng, Y. Zhong, S. Tian, A. Ma, and L. Zhang, “ChangeMask: Deep multi-task encoder-transformer-decoder architecture for semantic change detection,” ISPRS Journal of photogrammetry and remote sensing, vol. 183, pp. 228–239, January 2022.
  21. X. Xu, J. Li, and Z. Chen, “Tcianet: Transformer-based context information aggregation network for remote sensing image change detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 1951–1971, 2023.
  22. J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, and C. Xu, “CMT: Convolutional neural networks meet vision transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 175–12 185.
  23. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  24. H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
  25. S. Gao, X. Liu, B. Zeng, S. Xu, Y. Li, X. Luo, J. Liu, X. Zhen, and B. Zhang, “Implicit diffusion models for continuous super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10 021–10 030.
  26. J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin, “Diffusion models for implicit image segmentation ensembles,” in International Conference on Medical Imaging with Deep Learning.   PMLR, 2022, pp. 1336–1348.
  27. E. A. Brempong, S. Kornblith, T. Chen, N. Parmar, M. Minderer, and M. Norouzi, “Denoising pretraining for semantic segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 4175–4186.
  28. W. H. Pinaya, M. S. Graham, R. Gray, P. F. Da Costa, P.-D. Tudosiu, P. Wright, Y. H. Mah, A. D. MacKinnon, J. T. Teo, R. Jager et al., “Fast unsupervised brain anomaly detection and segmentation with diffusion models,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 705–714.
  29. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.
  30. A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool, “Repaint: Inpainting using denoising diffusion probabilistic models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 461–11 471.
  31. J. Lei, J. Tang, and K. Jia, “Rgbd2: Generative scene synthesis via incremental view inpainting using rgbd diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8422–8434.
  32. J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion models for high fidelity image generation.” J. Mach. Learn. Res., vol. 23, no. 47, pp. 1–33, 2022.
  33. M. Kim, F. Liu, A. Jain, and X. Liu, “Dcface: Synthetic face generation with dual condition diffusion model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12 715–12 725.
  34. W. G. C. Bandara, N. G. Nair, and V. M. Patel, “DDPM-CD: Remote sensing change detection using denoising diffusion probabilistic models,” arXiv preprint arXiv:2206.11892, 2022.
  35. M. Zhang, G. Xu, K. Chen, M. Yan, and X. Sun, “Triplet-based semantic relation learning for aerial remote sensing image change detection,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 2, pp. 266–270, 2018.
  36. X. Zhang, B. Zhang, W. Yu, and X. Kang, “Federated deep learning with prototype matching for object extraction from very-high-resolution remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–16, 2023.
  37. X. Zhang, W. Shi, Z. Lv, and F. Peng, “Land cover change detection from high-resolution remote sensing imagery using multitemporal deep feature collaborative learning and a semi-supervised chan–vese model,” Remote Sensing, vol. 11, no. 23, p. 2787, 2019.
  38. J. Liu, M. Gong, K. Qin, and P. Zhang, “A deep convolutional coupling network for change detection based on heterogeneous optical and radar images,” IEEE transactions on neural networks and learning systems, vol. 29, no. 3, pp. 545–559, 2016.
  39. L. Mou, L. Bruzzone, and X. X. Zhu, “Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 924–935, 2018.
  40. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  41. W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network for change detection,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2022, pp. 207–210.
  42. C. Zhang, L. Wang, S. Cheng, and Y. Li, “Swinsunet: Pure transformer network for remote sensing image change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  43. Y. Wang, D. Hong, J. Sha, L. Gao, L. Liu, Y. Zhang, and X. Rong, “Spectral–spatial–temporal transformers for hyperspectral image change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  44. W. Liu, Y. Lin, W. Liu, Y. Yu, and J. Li, “An attention-based multiscale transformer network for remote sensing image change detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 202, pp. 599–609, 2023.
  45. Q. Li, R. Zhong, X. Du, and Y. Du, “Transunetcd: A hybrid transformer network for change detection in optical remote-sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19, 2022.
  46. A. Rahman, J. M. J. Valanarasu, I. Hacihaliloglu, and V. M. Patel, “Ambiguous medical image segmentation using diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 11 536–11 546.
  47. N. Chen, J. Yue, L. Fang, and S. Xia, “Spectraldiff: A generative framework for hyperspectral image classification with diffusion models,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  48. M. Lebedev, Y. V. Vizilter, O. Vygolov, V. Knyaz, and A. Y. Rubis, “Change detection in remote sensing images using conditional adversarial networks.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42, no. 2, 2018.
  49. S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set,” IEEE Transactions on geoscience and remote sensing, vol. 57, no. 1, pp. 574–586, 2018.
  50. X. Zhang, W. Yu, M.-O. Pun, and W. Shi, “Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 197, pp. 1–17, 2023.
  51. Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 5, pp. 811–815, 2020.
  52. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.
  53. X. Ma, X. Zhang, and M.-O. Pun, “A crossmodal multiscale fusion network for semantic segmentation of remote sensing data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3463–3474, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yihan Wen (1 paper)
  2. Xianping Ma (10 papers)
  3. Xiaokang Zhang (42 papers)
  4. Man-On Pun (28 papers)
Citations (19)