Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Entanglement Negativity and Defect Extremal Surface (2206.05951v4)

Published 13 Jun 2022 in hep-th, cond-mat.str-el, and gr-qc

Abstract: We study entanglement negativity for evaporating black hole based on the holographic model with defect brane. We introduce a defect extremal surface formula for entanglement negativity. Based on partial reduction, we show the equivalence between defect extremal surface formula and island formula for entanglement negativity in AdS$_3$/BCFT$_2$. Extending the study to the model of eternal black hole plus CFT bath, we find that black hole-black hole negativity decreases until vanishing, left black hole-left radiation negativity is always a constant, radiation-radiation negativity increases and then saturates at a time later than Page time. In all the time dependent cases, defect extremal surface formula agrees with island formula.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14, 2460-2473 (1976) doi:10.1103/PhysRevD.14.2460
  2. D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743-3746 (1993) doi:10.1103/PhysRevLett.71.3743 [arXiv:hep-th/9306083 [hep-th]].
  3. D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09, 028 (2013) doi:10.1088/1475-7516/2013/09/028 [arXiv:1301.4995 [hep-th]].
  4. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002) doi:10.1103/PhysRevA.65.032314 [arXiv:quant-ph/0102117 [quant-ph]].
  5. M. B. Plenio, “Logarithmic Negativity: A Full Entanglement Monotone That is not Convex,” Phys. Rev. Lett. 95, no.9, 090503 (2005) doi:10.1103/PhysRevLett.95.090503 [arXiv:quant-ph/0505071 [quant-ph]].
  6. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406, P06002 (2004) doi:10.1088/1742-5468/2004/06/P06002 [arXiv:hep-th/0405152 [hep-th]].
  7. P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in quantum field theory,” Phys. Rev. Lett. 109, 130502 (2012) doi:10.1103/PhysRevLett.109.130502 [arXiv:1206.3092 [cond-mat.stat-mech]].
  8. P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in extended systems: A field theoretical approach,” J. Stat. Mech. 1302, P02008 (2013) doi:10.1088/1742-5468/2013/02/P02008 [arXiv:1210.5359 [cond-mat.stat-mech]].
  9. P. Calabrese, L. Tagliacozzo and E. Tonni, “Entanglement negativity in the critical Ising chain,” J. Stat. Mech. 1305, P05002 (2013) doi:10.1088/1742-5468/2013/05/P05002 [arXiv:1302.1113 [cond-mat.stat-mech]].
  10. V. Alba, “Entanglement negativity and conformal field theory: a Monte Carlo study,” J. Stat. Mech. 1305, P05013 (2013) doi:10.1088/1742-5468/2013/05/P05013 [arXiv:1302.1110 [cond-mat.stat-mech]].
  11. A. Coser, E. Tonni and P. Calabrese, “Entanglement negativity after a global quantum quench,” J. Stat. Mech. 1412, no.12, P12017 (2014) doi:10.1088/1742-5468/2014/12/P12017 [arXiv:1410.0900 [cond-mat.stat-mech]].
  12. P. Calabrese, J. Cardy and E. Tonni, “Finite temperature entanglement negativity in conformal field theory,” J. Phys. A 48, no.1, 015006 (2015) doi:10.1088/1751-8113/48/1/015006 [arXiv:1408.3043 [cond-mat.stat-mech]].
  13. M. Hoogeveen and B. Doyon, “Entanglement negativity and entropy in non-equilibrium conformal field theory,” Nucl. Phys. B 898, 78-112 (2015) doi:10.1016/j.nuclphysb.2015.06.021 [arXiv:1412.7568 [cond-mat.stat-mech]].
  14. O. Blondeau-Fournier, O. A. Castro-Alvaredo and B. Doyon, “Universal scaling of the logarithmic negativity in massive quantum field theory,” J. Phys. A 49, no.12, 125401 (2016) doi:10.1088/1751-8113/49/12/125401 [arXiv:1508.04026 [hep-th]].
  15. X. Wen, P. Y. Chang and S. Ryu, “Entanglement negativity after a local quantum quench in conformal field theories,” Phys. Rev. B 92, no.7, 075109 (2015) doi:10.1103/PhysRevB.92.075109 [arXiv:1501.00568 [cond-mat.stat-mech]].
  16. P. Ruggiero, V. Alba and P. Calabrese, “Negativity spectrum of one-dimensional conformal field theories,” Phys. Rev. B 94, no.19, 195121 (2016) doi:10.1103/PhysRevB.94.195121 [arXiv:1607.02992 [cond-mat.stat-mech]].
  17. P. Ruggiero, V. Alba and P. Calabrese, “Entanglement negativity in random spin chains,” Phys. Rev. B 94, no.3, 035152 (2016) doi:10.1103/PhysRevB.94.035152 [arXiv:1605.00674 [cond-mat.str-el]].
  18. V. Alba and F. Carollo, “Logarithmic negativity in out-of-equilibrium open free-fermion chains: An exactly solvable case,” [arXiv:2205.02139 [cond-mat.stat-mech]].
  19. B. Bertini, K. Klobas and T. C. Lu, “Entanglement Negativity and Mutual Information after a Quantum Quench: Exact Link from Space-Time Duality,” [arXiv:2203.17254 [quant-ph]].
  20. C. Castelnovo, “Negativity and topological order in the toric code,” Phys. Rev. A 88, no.4, 042319 (2013) doi:10.1103/PhysRevA.88.042319 [arXiv:1306.4990 [cond-mat.str-el]].
  21. Y. A. Lee and G. Vidal, “Entanglement negativity and topological order,” Phys. Rev. A 88, no.4, 042318 (2013) doi:10.1103/PhysRevA.88.042318 [arXiv:1306.5711 [quant-ph]].
  22. X. Wen, P. Y. Chang and S. Ryu, “Topological entanglement negativity in Chern-Simons theories,” JHEP 09, 012 (2016) doi:10.1007/JHEP09(2016)012 [arXiv:1606.04118 [cond-mat.str-el]].
  23. X. Wen, S. Matsuura and S. Ryu, “Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories,” Phys. Rev. B 93, no.24, 245140 (2016) doi:10.1103/PhysRevB.93.245140 [arXiv:1603.08534 [cond-mat.mes-hall]].
  24. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104, 207-226 (1986) doi:10.1007/BF01211590
  25. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP 12, 063 (2019) doi:10.1007/JHEP12(2019)063 [arXiv:1905.08762 [hep-th]].
  26. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03, 149 (2020) doi:10.1007/JHEP03(2020)149 [arXiv:1908.10996 [hep-th]].
  27. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05, 013 (2020) doi:10.1007/JHEP05(2020)013 [arXiv:1911.12333 [hep-th]].
  28. G. Penington, S. H. Shenker, D. Stanford and Z. Yang, “Replica wormholes and the black hole interior,” JHEP 03, 205 (2022) doi:10.1007/JHEP03(2022)205 [arXiv:1911.11977 [hep-th]].
  29. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “The entropy of Hawking radiation,” Rev. Mod. Phys. 93, no.3, 035002 (2021) doi:10.1103/RevModPhys.93.035002 [arXiv:2006.06872 [hep-th]].
  30. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) doi:10.1103/PhysRevLett.96.181602 [arXiv:hep-th/0603001 [hep-th]].
  31. V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 07, 062 (2007) doi:10.1088/1126-6708/2007/07/062 [arXiv:0705.0016 [hep-th]].
  32. H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05, 036 (2011) doi:10.1007/JHEP05(2011)036 [arXiv:1102.0440 [hep-th]].
  33. A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08, 090 (2013) doi:10.1007/JHEP08(2013)090 [arXiv:1304.4926 [hep-th]].
  34. T. Faulkner, A. Lewkowycz and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 11, 074 (2013) doi:10.1007/JHEP11(2013)074 [arXiv:1307.2892 [hep-th]].
  35. N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01, 073 (2015) doi:10.1007/JHEP01(2015)073 [arXiv:1408.3203 [hep-th]].
  36. T. Hartman, “Entanglement Entropy at Large Central Charge,” [arXiv:1303.6955 [hep-th]].
  37. T. Faulkner, “The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,” [arXiv:1303.7221 [hep-th]].
  38. T. Takayanagi and K. Umemoto, “Entanglement of purification through holographic duality,” Nature Phys. 14, no.6, 573-577 (2018) doi:10.1038/s41567-018-0075-2 [arXiv:1708.09393 [hep-th]].
  39. T. Takayanagi, “Holographic Dual of BCFT,” Phys. Rev. Lett. 107, 101602 (2011) doi:10.1103/PhysRevLett.107.101602 [arXiv:1105.5165 [hep-th]].
  40. X. Dong and A. Lewkowycz, “Entropy, Extremality, Euclidean Variations, and the Equations of Motion,” JHEP 01, 081 (2018) doi:10.1007/JHEP01(2018)081 [arXiv:1705.08453 [hep-th]].
  41. J. Sully, M. V. Raamsdonk and D. Wakeham, “BCFT entanglement entropy at large central charge and the black hole interior,” JHEP 03, 167 (2021) doi:10.1007/JHEP03(2021)167 [arXiv:2004.13088 [hep-th]].
  42. L. Randall and R. Sundrum, “An Alternative to compactification,” Phys. Rev. Lett. 83, 4690-4693 (1999) doi:10.1103/PhysRevLett.83.4690 [arXiv:hep-th/9906064 [hep-th]].
  43. F. Deng, J. Chu and Y. Zhou, “Defect extremal surface as the holographic counterpart of Island formula,” JHEP 03, 008 (2021) doi:10.1007/JHEP03(2021)008 [arXiv:2012.07612 [hep-th]].
  44. J. Chu, F. Deng and Y. Zhou, “Page curve from defect extremal surface and island in higher dimensions,” JHEP 10, 149 (2021) doi:10.1007/JHEP10(2021)149 [arXiv:2105.09106 [hep-th]].
  45. T. Li, M. K. Yuan and Y. Zhou, “Defect extremal surface for reflected entropy,” JHEP 01, 018 (2022) doi:10.1007/JHEP01(2022)018 [arXiv:2108.08544 [hep-th]].
  46. Z. Wang, Z. Xu, S. Zhou and Y. Zhou, “Partial reduction and cosmology at defect brane,” JHEP 05, 049 (2022) doi:10.1007/JHEP05(2022)049 [arXiv:2112.13782 [hep-th]].
  47. M. Rangamani and M. Rota, “Comments on Entanglement Negativity in Holographic Field Theories,” JHEP 10, 060 (2014) doi:10.1007/JHEP10(2014)060 [arXiv:1406.6989 [hep-th]].
  48. M. Kulaxizi, A. Parnachev and G. Policastro, “Conformal Blocks and Negativity at Large Central Charge,” JHEP 09, 010 (2014) doi:10.1007/JHEP09(2014)010 [arXiv:1407.0324 [hep-th]].
  49. J. Kudler-Flam and S. Ryu, “Entanglement negativity and minimal entanglement wedge cross sections in holographic theories,” Phys. Rev. D 99, no.10, 106014 (2019) doi:10.1103/PhysRevD.99.106014 [arXiv:1808.00446 [hep-th]].
  50. Y. Kusuki, J. Kudler-Flam and S. Ryu, “Derivation of holographic negativity in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Phys. Rev. Lett. 123, no.13, 131603 (2019) doi:10.1103/PhysRevLett.123.131603 [arXiv:1907.07824 [hep-th]].
  51. X. Dong, X. L. Qi and M. Walter, “Holographic entanglement negativity and replica symmetry breaking,” JHEP 06, 024 (2021) doi:10.1007/JHEP06(2021)024 [arXiv:2101.11029 [hep-th]].
  52. H. Shapourian, S. Liu, J. Kudler-Flam and A. Vishwanath, “Entanglement Negativity Spectrum of Random Mixed States: A Diagrammatic Approach,” PRX Quantum 2, no.3, 030347 (2021) doi:10.1103/PRXQuantum.2.030347 [arXiv:2011.01277 [cond-mat.str-el]].
  53. S. Vardhan, J. Kudler-Flam, H. Shapourian and H. Liu, “Bound Entanglement in Thermalized States and Black Hole Radiation,” Phys. Rev. Lett. 129, no.6, 061602 (2022) doi:10.1103/PhysRevLett.129.061602 [arXiv:2110.02959 [hep-th]].
  54. J. Kudler-Flam, V. Narovlansky and S. Ryu, “Negativity spectra in random tensor networks and holography,” JHEP 02, 076 (2022) doi:10.1007/JHEP02(2022)076 [arXiv:2109.02649 [hep-th]].
  55. X. Dong, S. McBride and W. W. Weng, “Replica wormholes and holographic entanglement negativity,” JHEP 06, 094 (2022) doi:10.1007/JHEP06(2022)094 [arXiv:2110.11947 [hep-th]].
  56. P. Chaturvedi, V. Malvimat and G. Sengupta, “Holographic Quantum Entanglement Negativity,” JHEP 05, 172 (2018) doi:10.1007/JHEP05(2018)172 [arXiv:1609.06609 [hep-th]].
  57. P. Chaturvedi, V. Malvimat and G. Sengupta, “Covariant holographic entanglement negativity,” Eur. Phys. J. C 78, no.9, 776 (2018) doi:10.1140/epjc/s10052-018-6259-1 [arXiv:1611.00593 [hep-th]].
  58. V. Malvimat and G. Sengupta, “Entanglement negativity at large central charge,” Phys. Rev. D 103, no.10, 106003 (2021) doi:10.1103/PhysRevD.103.106003 [arXiv:1712.02288 [hep-th]].
  59. P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Holographic entanglement negativity conjecture for adjacent intervals in A⁢d⁢S3/C⁢F⁢T2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Phys. Lett. B 793, 104-109 (2019) doi:10.1016/j.physletb.2019.04.037 [arXiv:1707.08293 [hep-th]].
  60. P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Covariant holographic entanglement negativity for adjacent subsystems in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT /CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Nucl. Phys. B 945, 114683 (2019) doi:10.1016/j.nuclphysb.2019.114683 [arXiv:1710.06138 [hep-th]].
  61. V. Malvimat, S. Mondal, B. Paul and G. Sengupta, “Holographic entanglement negativity for disjoint intervals in A⁢d⁢S3/C⁢F⁢T2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Eur. Phys. J. C 79, no.3, 191 (2019) doi:10.1140/epjc/s10052-019-6693-8 [arXiv:1810.08015 [hep-th]].
  62. V. Malvimat, S. Mondal, B. Paul and G. Sengupta, “Covariant holographic entanglement negativity for disjoint intervals in A⁢d⁢S3/C⁢F⁢T2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Eur. Phys. J. C 79, no.6, 514 (2019) doi:10.1140/epjc/s10052-019-7032-9 [arXiv:1812.03117 [hep-th]].
  63. V. Malvimat, S. Mondal and G. Sengupta, “Time Evolution of Entanglement Negativity from Black Hole Interiors,” JHEP 05, 183 (2019) doi:10.1007/JHEP05(2019)183 [arXiv:1812.04424 [hep-th]].
  64. P. Chaturvedi, V. Malvimat and G. Sengupta, “Entanglement negativity, Holography and Black holes,” Eur. Phys. J. C 78, no.6, 499 (2018) doi:10.1140/epjc/s10052-018-5969-8 [arXiv:1602.01147 [hep-th]].
  65. P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Holographic entanglement negativity for adjacent subsystems in AdSd+1𝑑1{}_{d+1}start_FLOATSUBSCRIPT italic_d + 1 end_FLOATSUBSCRIPT/CFTd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT,” Eur. Phys. J. Plus 133, no.8, 300 (2018) doi:10.1140/epjp/i2018-12113-0 [arXiv:1708.00612 [hep-th]].
  66. J. Kumar Basak, H. Parihar, B. Paul and G. Sengupta, “Holographic entanglement negativity for disjoint subsystems in AdSd+1/CFTdsubscriptAdSd1subscriptCFTd\mathrm{AdS_{d+1}/CFT_{d}}roman_AdS start_POSTSUBSCRIPT roman_d + 1 end_POSTSUBSCRIPT / roman_CFT start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT,” [arXiv:2001.10534 [hep-th]].
  67. J. Kumar Basak, D. Basu, V. Malvimat, H. Parihar and G. Sengupta, “Page curve for entanglement negativity through geometric evaporation,” SciPost Phys. 12, no.1, 004 (2022) doi:10.21468/SciPostPhys.12.1.004 [arXiv:2106.12593 [hep-th]].
  68. J. Kumar Basak, D. Basu, V. Malvimat, H. Parihar and G. Sengupta, “Islands for entanglement negativity,” SciPost Phys. 12, no.1, 003 (2022) doi:10.21468/SciPostPhys.12.1.003 [arXiv:2012.03983 [hep-th]].
  69. D. Basu, H. Parihar, V. Raj and G. Sengupta, “Defect extremal surfaces for entanglement negativity,” [arXiv:2205.07905 [hep-th]].
  70. M. Afrasiar, J. Kumar Basak, A. Chandra and G. Sengupta, “Islands for Entanglement Negativity in Communicating Black Holes,” [arXiv:2205.07903 [hep-th]].
  71. J. Lin and Y. Lu, “Effective reflected entropy and entanglement negativity for general 2D eternal black holes,” [arXiv:2204.08290 [hep-th]].
  72. P. Hayden, M. Lemm and J. Sorce, “Reflected entropy is not a correlation measure,” [arXiv:2302.10208 [hep-th]].
  73. S. Dutta and T. Faulkner, “A canonical purification for the entanglement wedge cross-section,” JHEP 03, 178 (2021) doi:10.1007/JHEP03(2021)178 [arXiv:1905.00577 [hep-th]].
  74. P. Bueno and H. Casini, “Reflected entropy for free scalars,” JHEP 11, 148 (2020) doi:10.1007/JHEP11(2020)148 [arXiv:2008.11373 [hep-th]].
  75. A. Karch and L. Randall, “Locally localized gravity,” JHEP 05, 008 (2001) doi:10.1088/1126-6708/2001/05/008 [arXiv:hep-th/0011156 [hep-th]].
  76. A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on branes with boundaries,” JHEP 06, 063 (2001) doi:10.1088/1126-6708/2001/06/063 [arXiv:hep-th/0105132 [hep-th]].
  77. Y. Lu and J. Lin, “The Markov gap in the presence of islands,” JHEP 03, 043 (2023) doi:10.1007/JHEP03(2023)043 [arXiv:2211.06886 [hep-th]].
Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com