Entanglement Negativity and Defect Extremal Surface (2206.05951v4)
Abstract: We study entanglement negativity for evaporating black hole based on the holographic model with defect brane. We introduce a defect extremal surface formula for entanglement negativity. Based on partial reduction, we show the equivalence between defect extremal surface formula and island formula for entanglement negativity in AdS$_3$/BCFT$_2$. Extending the study to the model of eternal black hole plus CFT bath, we find that black hole-black hole negativity decreases until vanishing, left black hole-left radiation negativity is always a constant, radiation-radiation negativity increases and then saturates at a time later than Page time. In all the time dependent cases, defect extremal surface formula agrees with island formula.
- S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14, 2460-2473 (1976) doi:10.1103/PhysRevD.14.2460
- D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743-3746 (1993) doi:10.1103/PhysRevLett.71.3743 [arXiv:hep-th/9306083 [hep-th]].
- D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09, 028 (2013) doi:10.1088/1475-7516/2013/09/028 [arXiv:1301.4995 [hep-th]].
- G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002) doi:10.1103/PhysRevA.65.032314 [arXiv:quant-ph/0102117 [quant-ph]].
- M. B. Plenio, “Logarithmic Negativity: A Full Entanglement Monotone That is not Convex,” Phys. Rev. Lett. 95, no.9, 090503 (2005) doi:10.1103/PhysRevLett.95.090503 [arXiv:quant-ph/0505071 [quant-ph]].
- P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406, P06002 (2004) doi:10.1088/1742-5468/2004/06/P06002 [arXiv:hep-th/0405152 [hep-th]].
- P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in quantum field theory,” Phys. Rev. Lett. 109, 130502 (2012) doi:10.1103/PhysRevLett.109.130502 [arXiv:1206.3092 [cond-mat.stat-mech]].
- P. Calabrese, J. Cardy and E. Tonni, “Entanglement negativity in extended systems: A field theoretical approach,” J. Stat. Mech. 1302, P02008 (2013) doi:10.1088/1742-5468/2013/02/P02008 [arXiv:1210.5359 [cond-mat.stat-mech]].
- P. Calabrese, L. Tagliacozzo and E. Tonni, “Entanglement negativity in the critical Ising chain,” J. Stat. Mech. 1305, P05002 (2013) doi:10.1088/1742-5468/2013/05/P05002 [arXiv:1302.1113 [cond-mat.stat-mech]].
- V. Alba, “Entanglement negativity and conformal field theory: a Monte Carlo study,” J. Stat. Mech. 1305, P05013 (2013) doi:10.1088/1742-5468/2013/05/P05013 [arXiv:1302.1110 [cond-mat.stat-mech]].
- A. Coser, E. Tonni and P. Calabrese, “Entanglement negativity after a global quantum quench,” J. Stat. Mech. 1412, no.12, P12017 (2014) doi:10.1088/1742-5468/2014/12/P12017 [arXiv:1410.0900 [cond-mat.stat-mech]].
- P. Calabrese, J. Cardy and E. Tonni, “Finite temperature entanglement negativity in conformal field theory,” J. Phys. A 48, no.1, 015006 (2015) doi:10.1088/1751-8113/48/1/015006 [arXiv:1408.3043 [cond-mat.stat-mech]].
- M. Hoogeveen and B. Doyon, “Entanglement negativity and entropy in non-equilibrium conformal field theory,” Nucl. Phys. B 898, 78-112 (2015) doi:10.1016/j.nuclphysb.2015.06.021 [arXiv:1412.7568 [cond-mat.stat-mech]].
- O. Blondeau-Fournier, O. A. Castro-Alvaredo and B. Doyon, “Universal scaling of the logarithmic negativity in massive quantum field theory,” J. Phys. A 49, no.12, 125401 (2016) doi:10.1088/1751-8113/49/12/125401 [arXiv:1508.04026 [hep-th]].
- X. Wen, P. Y. Chang and S. Ryu, “Entanglement negativity after a local quantum quench in conformal field theories,” Phys. Rev. B 92, no.7, 075109 (2015) doi:10.1103/PhysRevB.92.075109 [arXiv:1501.00568 [cond-mat.stat-mech]].
- P. Ruggiero, V. Alba and P. Calabrese, “Negativity spectrum of one-dimensional conformal field theories,” Phys. Rev. B 94, no.19, 195121 (2016) doi:10.1103/PhysRevB.94.195121 [arXiv:1607.02992 [cond-mat.stat-mech]].
- P. Ruggiero, V. Alba and P. Calabrese, “Entanglement negativity in random spin chains,” Phys. Rev. B 94, no.3, 035152 (2016) doi:10.1103/PhysRevB.94.035152 [arXiv:1605.00674 [cond-mat.str-el]].
- V. Alba and F. Carollo, “Logarithmic negativity in out-of-equilibrium open free-fermion chains: An exactly solvable case,” [arXiv:2205.02139 [cond-mat.stat-mech]].
- B. Bertini, K. Klobas and T. C. Lu, “Entanglement Negativity and Mutual Information after a Quantum Quench: Exact Link from Space-Time Duality,” [arXiv:2203.17254 [quant-ph]].
- C. Castelnovo, “Negativity and topological order in the toric code,” Phys. Rev. A 88, no.4, 042319 (2013) doi:10.1103/PhysRevA.88.042319 [arXiv:1306.4990 [cond-mat.str-el]].
- Y. A. Lee and G. Vidal, “Entanglement negativity and topological order,” Phys. Rev. A 88, no.4, 042318 (2013) doi:10.1103/PhysRevA.88.042318 [arXiv:1306.5711 [quant-ph]].
- X. Wen, P. Y. Chang and S. Ryu, “Topological entanglement negativity in Chern-Simons theories,” JHEP 09, 012 (2016) doi:10.1007/JHEP09(2016)012 [arXiv:1606.04118 [cond-mat.str-el]].
- X. Wen, S. Matsuura and S. Ryu, “Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories,” Phys. Rev. B 93, no.24, 245140 (2016) doi:10.1103/PhysRevB.93.245140 [arXiv:1603.08534 [cond-mat.mes-hall]].
- J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104, 207-226 (1986) doi:10.1007/BF01211590
- A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP 12, 063 (2019) doi:10.1007/JHEP12(2019)063 [arXiv:1905.08762 [hep-th]].
- A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03, 149 (2020) doi:10.1007/JHEP03(2020)149 [arXiv:1908.10996 [hep-th]].
- A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05, 013 (2020) doi:10.1007/JHEP05(2020)013 [arXiv:1911.12333 [hep-th]].
- G. Penington, S. H. Shenker, D. Stanford and Z. Yang, “Replica wormholes and the black hole interior,” JHEP 03, 205 (2022) doi:10.1007/JHEP03(2022)205 [arXiv:1911.11977 [hep-th]].
- A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “The entropy of Hawking radiation,” Rev. Mod. Phys. 93, no.3, 035002 (2021) doi:10.1103/RevModPhys.93.035002 [arXiv:2006.06872 [hep-th]].
- S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) doi:10.1103/PhysRevLett.96.181602 [arXiv:hep-th/0603001 [hep-th]].
- V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 07, 062 (2007) doi:10.1088/1126-6708/2007/07/062 [arXiv:0705.0016 [hep-th]].
- H. Casini, M. Huerta and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05, 036 (2011) doi:10.1007/JHEP05(2011)036 [arXiv:1102.0440 [hep-th]].
- A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08, 090 (2013) doi:10.1007/JHEP08(2013)090 [arXiv:1304.4926 [hep-th]].
- T. Faulkner, A. Lewkowycz and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 11, 074 (2013) doi:10.1007/JHEP11(2013)074 [arXiv:1307.2892 [hep-th]].
- N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01, 073 (2015) doi:10.1007/JHEP01(2015)073 [arXiv:1408.3203 [hep-th]].
- T. Hartman, “Entanglement Entropy at Large Central Charge,” [arXiv:1303.6955 [hep-th]].
- T. Faulkner, “The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,” [arXiv:1303.7221 [hep-th]].
- T. Takayanagi and K. Umemoto, “Entanglement of purification through holographic duality,” Nature Phys. 14, no.6, 573-577 (2018) doi:10.1038/s41567-018-0075-2 [arXiv:1708.09393 [hep-th]].
- T. Takayanagi, “Holographic Dual of BCFT,” Phys. Rev. Lett. 107, 101602 (2011) doi:10.1103/PhysRevLett.107.101602 [arXiv:1105.5165 [hep-th]].
- X. Dong and A. Lewkowycz, “Entropy, Extremality, Euclidean Variations, and the Equations of Motion,” JHEP 01, 081 (2018) doi:10.1007/JHEP01(2018)081 [arXiv:1705.08453 [hep-th]].
- J. Sully, M. V. Raamsdonk and D. Wakeham, “BCFT entanglement entropy at large central charge and the black hole interior,” JHEP 03, 167 (2021) doi:10.1007/JHEP03(2021)167 [arXiv:2004.13088 [hep-th]].
- L. Randall and R. Sundrum, “An Alternative to compactification,” Phys. Rev. Lett. 83, 4690-4693 (1999) doi:10.1103/PhysRevLett.83.4690 [arXiv:hep-th/9906064 [hep-th]].
- F. Deng, J. Chu and Y. Zhou, “Defect extremal surface as the holographic counterpart of Island formula,” JHEP 03, 008 (2021) doi:10.1007/JHEP03(2021)008 [arXiv:2012.07612 [hep-th]].
- J. Chu, F. Deng and Y. Zhou, “Page curve from defect extremal surface and island in higher dimensions,” JHEP 10, 149 (2021) doi:10.1007/JHEP10(2021)149 [arXiv:2105.09106 [hep-th]].
- T. Li, M. K. Yuan and Y. Zhou, “Defect extremal surface for reflected entropy,” JHEP 01, 018 (2022) doi:10.1007/JHEP01(2022)018 [arXiv:2108.08544 [hep-th]].
- Z. Wang, Z. Xu, S. Zhou and Y. Zhou, “Partial reduction and cosmology at defect brane,” JHEP 05, 049 (2022) doi:10.1007/JHEP05(2022)049 [arXiv:2112.13782 [hep-th]].
- M. Rangamani and M. Rota, “Comments on Entanglement Negativity in Holographic Field Theories,” JHEP 10, 060 (2014) doi:10.1007/JHEP10(2014)060 [arXiv:1406.6989 [hep-th]].
- M. Kulaxizi, A. Parnachev and G. Policastro, “Conformal Blocks and Negativity at Large Central Charge,” JHEP 09, 010 (2014) doi:10.1007/JHEP09(2014)010 [arXiv:1407.0324 [hep-th]].
- J. Kudler-Flam and S. Ryu, “Entanglement negativity and minimal entanglement wedge cross sections in holographic theories,” Phys. Rev. D 99, no.10, 106014 (2019) doi:10.1103/PhysRevD.99.106014 [arXiv:1808.00446 [hep-th]].
- Y. Kusuki, J. Kudler-Flam and S. Ryu, “Derivation of holographic negativity in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Phys. Rev. Lett. 123, no.13, 131603 (2019) doi:10.1103/PhysRevLett.123.131603 [arXiv:1907.07824 [hep-th]].
- X. Dong, X. L. Qi and M. Walter, “Holographic entanglement negativity and replica symmetry breaking,” JHEP 06, 024 (2021) doi:10.1007/JHEP06(2021)024 [arXiv:2101.11029 [hep-th]].
- H. Shapourian, S. Liu, J. Kudler-Flam and A. Vishwanath, “Entanglement Negativity Spectrum of Random Mixed States: A Diagrammatic Approach,” PRX Quantum 2, no.3, 030347 (2021) doi:10.1103/PRXQuantum.2.030347 [arXiv:2011.01277 [cond-mat.str-el]].
- S. Vardhan, J. Kudler-Flam, H. Shapourian and H. Liu, “Bound Entanglement in Thermalized States and Black Hole Radiation,” Phys. Rev. Lett. 129, no.6, 061602 (2022) doi:10.1103/PhysRevLett.129.061602 [arXiv:2110.02959 [hep-th]].
- J. Kudler-Flam, V. Narovlansky and S. Ryu, “Negativity spectra in random tensor networks and holography,” JHEP 02, 076 (2022) doi:10.1007/JHEP02(2022)076 [arXiv:2109.02649 [hep-th]].
- X. Dong, S. McBride and W. W. Weng, “Replica wormholes and holographic entanglement negativity,” JHEP 06, 094 (2022) doi:10.1007/JHEP06(2022)094 [arXiv:2110.11947 [hep-th]].
- P. Chaturvedi, V. Malvimat and G. Sengupta, “Holographic Quantum Entanglement Negativity,” JHEP 05, 172 (2018) doi:10.1007/JHEP05(2018)172 [arXiv:1609.06609 [hep-th]].
- P. Chaturvedi, V. Malvimat and G. Sengupta, “Covariant holographic entanglement negativity,” Eur. Phys. J. C 78, no.9, 776 (2018) doi:10.1140/epjc/s10052-018-6259-1 [arXiv:1611.00593 [hep-th]].
- V. Malvimat and G. Sengupta, “Entanglement negativity at large central charge,” Phys. Rev. D 103, no.10, 106003 (2021) doi:10.1103/PhysRevD.103.106003 [arXiv:1712.02288 [hep-th]].
- P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Holographic entanglement negativity conjecture for adjacent intervals in AdS3/CFT2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Phys. Lett. B 793, 104-109 (2019) doi:10.1016/j.physletb.2019.04.037 [arXiv:1707.08293 [hep-th]].
- P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Covariant holographic entanglement negativity for adjacent subsystems in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT /CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” Nucl. Phys. B 945, 114683 (2019) doi:10.1016/j.nuclphysb.2019.114683 [arXiv:1710.06138 [hep-th]].
- V. Malvimat, S. Mondal, B. Paul and G. Sengupta, “Holographic entanglement negativity for disjoint intervals in AdS3/CFT2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Eur. Phys. J. C 79, no.3, 191 (2019) doi:10.1140/epjc/s10052-019-6693-8 [arXiv:1810.08015 [hep-th]].
- V. Malvimat, S. Mondal, B. Paul and G. Sengupta, “Covariant holographic entanglement negativity for disjoint intervals in AdS3/CFT2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” Eur. Phys. J. C 79, no.6, 514 (2019) doi:10.1140/epjc/s10052-019-7032-9 [arXiv:1812.03117 [hep-th]].
- V. Malvimat, S. Mondal and G. Sengupta, “Time Evolution of Entanglement Negativity from Black Hole Interiors,” JHEP 05, 183 (2019) doi:10.1007/JHEP05(2019)183 [arXiv:1812.04424 [hep-th]].
- P. Chaturvedi, V. Malvimat and G. Sengupta, “Entanglement negativity, Holography and Black holes,” Eur. Phys. J. C 78, no.6, 499 (2018) doi:10.1140/epjc/s10052-018-5969-8 [arXiv:1602.01147 [hep-th]].
- P. Jain, V. Malvimat, S. Mondal and G. Sengupta, “Holographic entanglement negativity for adjacent subsystems in AdSd+1𝑑1{}_{d+1}start_FLOATSUBSCRIPT italic_d + 1 end_FLOATSUBSCRIPT/CFTd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT,” Eur. Phys. J. Plus 133, no.8, 300 (2018) doi:10.1140/epjp/i2018-12113-0 [arXiv:1708.00612 [hep-th]].
- J. Kumar Basak, H. Parihar, B. Paul and G. Sengupta, “Holographic entanglement negativity for disjoint subsystems in AdSd+1/CFTdsubscriptAdSd1subscriptCFTd\mathrm{AdS_{d+1}/CFT_{d}}roman_AdS start_POSTSUBSCRIPT roman_d + 1 end_POSTSUBSCRIPT / roman_CFT start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT,” [arXiv:2001.10534 [hep-th]].
- J. Kumar Basak, D. Basu, V. Malvimat, H. Parihar and G. Sengupta, “Page curve for entanglement negativity through geometric evaporation,” SciPost Phys. 12, no.1, 004 (2022) doi:10.21468/SciPostPhys.12.1.004 [arXiv:2106.12593 [hep-th]].
- J. Kumar Basak, D. Basu, V. Malvimat, H. Parihar and G. Sengupta, “Islands for entanglement negativity,” SciPost Phys. 12, no.1, 003 (2022) doi:10.21468/SciPostPhys.12.1.003 [arXiv:2012.03983 [hep-th]].
- D. Basu, H. Parihar, V. Raj and G. Sengupta, “Defect extremal surfaces for entanglement negativity,” [arXiv:2205.07905 [hep-th]].
- M. Afrasiar, J. Kumar Basak, A. Chandra and G. Sengupta, “Islands for Entanglement Negativity in Communicating Black Holes,” [arXiv:2205.07903 [hep-th]].
- J. Lin and Y. Lu, “Effective reflected entropy and entanglement negativity for general 2D eternal black holes,” [arXiv:2204.08290 [hep-th]].
- P. Hayden, M. Lemm and J. Sorce, “Reflected entropy is not a correlation measure,” [arXiv:2302.10208 [hep-th]].
- S. Dutta and T. Faulkner, “A canonical purification for the entanglement wedge cross-section,” JHEP 03, 178 (2021) doi:10.1007/JHEP03(2021)178 [arXiv:1905.00577 [hep-th]].
- P. Bueno and H. Casini, “Reflected entropy for free scalars,” JHEP 11, 148 (2020) doi:10.1007/JHEP11(2020)148 [arXiv:2008.11373 [hep-th]].
- A. Karch and L. Randall, “Locally localized gravity,” JHEP 05, 008 (2001) doi:10.1088/1126-6708/2001/05/008 [arXiv:hep-th/0011156 [hep-th]].
- A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on branes with boundaries,” JHEP 06, 063 (2001) doi:10.1088/1126-6708/2001/06/063 [arXiv:hep-th/0105132 [hep-th]].
- Y. Lu and J. Lin, “The Markov gap in the presence of islands,” JHEP 03, 043 (2023) doi:10.1007/JHEP03(2023)043 [arXiv:2211.06886 [hep-th]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.