Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dealing with Sparse Rewards in Continuous Control Robotics via Heavy-Tailed Policies (2206.05652v1)

Published 12 Jun 2022 in cs.LG, cs.RO, cs.SY, and eess.SY

Abstract: In this paper, we present a novel Heavy-Tailed Stochastic Policy Gradient (HT-PSG) algorithm to deal with the challenges of sparse rewards in continuous control problems. Sparse reward is common in continuous control robotics tasks such as manipulation and navigation, and makes the learning problem hard due to non-trivial estimation of value functions over the state space. This demands either reward shaping or expert demonstrations for the sparse reward environment. However, obtaining high-quality demonstrations is quite expensive and sometimes even impossible. We propose a heavy-tailed policy parametrization along with a modified momentum-based policy gradient tracking scheme (HT-SPG) to induce a stable exploratory behavior to the algorithm. The proposed algorithm does not require access to expert demonstrations. We test the performance of HT-SPG on various benchmark tasks of continuous control with sparse rewards such as 1D Mario, Pathological Mountain Car, Sparse Pendulum in OpenAI Gym, and Sparse MuJoCo environments (Hopper-v2). We show consistent performance improvement across all tasks in terms of high average cumulative reward. HT-SPG also demonstrates improved convergence speed with minimum samples, thereby emphasizing the sample efficiency of our proposed algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Souradip Chakraborty (36 papers)
  2. Amrit Singh Bedi (75 papers)
  3. Alec Koppel (72 papers)
  4. Pratap Tokekar (96 papers)
  5. Dinesh Manocha (366 papers)
Citations (9)