Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simplified Un-Supervised Learning Based Approach for Ink Mismatch Detection in Handwritten Hyper-Spectral Document Images (2206.05539v1)

Published 11 Jun 2022 in cs.CV and cs.LG

Abstract: Hyper-spectral imaging has become the latest trend in the field of optical imaging systems. Among various other applications, hyper-spectral imaging has been widely used for analysis of printed and handwritten documents. This paper proposes an efficient technique for estimating the number of different but visibly similar inks present in a Hyper spectral Document Image. Our approach is based on un-supervised learning and does not require any prior knowledge of the dataset. The algorithm was tested on the iVision HHID dataset and has achieved comparable results with the state of the algorithms present in the literature. This work can prove to be effective when employed during the early stages of forgery detection in Hyper-spectral Document Images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.