Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forgery Detection in a Questioned Hyperspectral Document Image using K-means Clustering (2006.16057v1)

Published 29 Jun 2020 in cs.CV and cs.CR

Abstract: Hyperspectral imaging allows for analysis of images in several hundred of spectral bands depending on the spectral resolution of the imaging sensor. Hyperspectral document image is the one which has been captured by a hyperspectral camera so that the document can be observed in the different bands on the basis of their unique spectral signatures. To detect the forgery in a document various Ink mismatch detection techniques based on hyperspectral imaging have presented vast potential in differentiating visually similar inks. Inks of different materials exhibit different spectral signature even if they have the same color. Hyperspectral analysis of document images allows identification and discrimination of visually similar inks. Based on this analysis forensic experts can identify the authenticity of the document. In this paper an extensive ink mismatch detection technique is presented which uses KMean Clustering to identify different inks on the basis of their unique spectral response and separates them into different clusters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.