Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernelization for Feedback Vertex Set via Elimination Distance to a Forest (2206.04387v1)

Published 9 Jun 2022 in cs.DS

Abstract: We study efficient preprocessing for the undirected Feedback Vertex Set problem, a fundamental problem in graph theory which asks for a minimum-sized vertex set whose removal yields an acyclic graph. More precisely, we aim to determine for which parameterizations this problem admits a polynomial kernel. While a characterization is known for the related Vertex Cover problem based on the recently introduced notion of bridge-depth, it remained an open problem whether this could be generalized to Feedback Vertex Set. The answer turns out to be negative; the existence of polynomial kernels for structural parameterizations for Feedback Vertex Set is governed by the elimination distance to a forest. Under the standard assumption that NP is not a subset of coNP/poly, we prove that for any minor-closed graph class $\mathcal G$, Feedback Vertex Set parameterized by the size of a modulator to $\mathcal G$ has a polynomial kernel if and only if $\mathcal G$ has bounded elimination distance to a forest. This captures and generalizes all existing kernels for structural parameterizations of the Feedback Vertex Set problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.