Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Turing Kernelization Dichotomy for Structural Parameterizations of $\mathcal{F}$-Minor-Free Deletion (1906.05565v2)

Published 13 Jun 2019 in cs.DS and cs.CC

Abstract: For a fixed finite family of graphs $\mathcal{F}$, the $\mathcal{F}$-Minor-Free Deletion problem takes as input a graph $G$ and an integer $\ell$ and asks whether there exists a set $X \subseteq V(G)$ of size at most $\ell$ such that $G-X$ is $\mathcal{F}$-minor-free. For $\mathcal{F}={K_2}$ and $\mathcal{F}={K_3}$ this encodes Vertex Cover and Feedback Vertex Set respectively. When parameterized by the feedback vertex number of $G$ these two problems are known to admit a polynomial kernelization. Such a polynomial kernelization also exists for any $\mathcal{F}$ containing a planar graph but no forests. In this paper we show that $\mathcal{F}$-Minor-Free Deletion parameterized by the feedback vertex number is MK[2]-hard for $\mathcal{F} = {P_3}$. This rules out the existence of a polynomial kernel assuming $NP \subseteq coNP/poly$, and also gives evidence that the problem does not admit a polynomial Turing kernel. Our hardness result generalizes to any $\mathcal{F}$ not containing a $P_3$-subgraph-free graph, using as parameter the vertex-deletion distance to treewidth $mintw(\mathcal{F})$, where $mintw(\mathcal{F})$ denotes the minimum treewidth of the graphs in $\mathcal{F}$. For the other case, where $\mathcal{F}$ contains a $P_3$-subgraph-free graph, we present a polynomial Turing kernelization. Our results extend to $\mathcal{F}$-Subgraph-Free Deletion.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Huib Donkers (4 papers)
  2. Bart M. P. Jansen (56 papers)
Citations (7)