Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Collapse: A Review on Modelling Principles and Generalization (2206.04041v2)

Published 8 Jun 2022 in cs.LG

Abstract: Deep classifier neural networks enter the terminal phase of training (TPT) when training error reaches zero and tend to exhibit intriguing Neural Collapse (NC) properties. Neural collapse essentially represents a state at which the within-class variability of final hidden layer outputs is infinitesimally small and their class means form a simplex equiangular tight frame. This simplifies the last layer behaviour to that of a nearest-class center decision rule. Despite the simplicity of this state, the dynamics and implications of reaching it are yet to be fully understood. In this work, we review the principles which aid in modelling neural collapse, followed by the implications of this state on generalization and transfer learning capabilities of neural networks. Finally, we conclude by discussing potential avenues and directions for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Vignesh Kothapalli (9 papers)
Citations (61)

Summary

We haven't generated a summary for this paper yet.