Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Solving Non-local Fokker-Planck Equations by Deep Learning (2206.03439v1)

Published 7 Jun 2022 in physics.comp-ph, cs.NA, and math.NA

Abstract: Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal rule recently developed for accurately evaluating fractional laplacian and solve the space-fractional Fokker-Planck equations in 2D and 3D. We describe the modified trapezoidal rule in detail and verify the second-order accuracy. We demonstrate trapz-PiNNs have high expressive power through predicting solution with low $\mathcal{L}2$ relative error on a variety of numerical examples. We also use local metrics such as pointwise absolute and relative errors to analyze where could be further improved. We present an effective method for improving performance of trapz-PiNN on local metrics, provided that physical observations of high-fidelity simulation of the true solution are available. Besides the usual advantages of the deep learning solvers such as adaptivity and mesh-independence, the trapz-PiNN is able to solve PDEs with fractional laplacian with arbitrary $\alpha\in (0,2)$ and specializes on rectangular domain. It also has potential to be generalized into higher dimensions.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)