Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence in Total Variation for nonlinear functionals of random hyperspherical harmonics

Published 6 Jun 2022 in math.PR | (2206.02605v3)

Abstract: Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit $d$-dimensional sphere ($d\ge 2$). We study the convergence in Total Variation distance for their nonlinear statistics in the high energy limit, i.e., for diverging sequences of Laplace eigenvalues. Our approach takes advantage of a recent result by Bally, Caramellino and Poly (2020): combining the Central Limit Theorem in Wasserstein distance obtained by Marinucci and Rossi (2015) for Hermite-rank $2$ functionals with new results on the asymptotic behavior of their Malliavin-Sobolev norms, we are able to establish second order Gaussian fluctuations in this stronger probability metric as soon as the functional is regular enough. Our argument requires some novel estimates on moments of products of Gegenbauer polynomials that may be of independent interest, which we prove via the link between graph theory and diagram formulas.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.