Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence in Total Variation for nonlinear functionals of random hyperspherical harmonics (2206.02605v3)

Published 6 Jun 2022 in math.PR

Abstract: Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit $d$-dimensional sphere ($d\ge 2$). We study the convergence in Total Variation distance for their nonlinear statistics in the high energy limit, i.e., for diverging sequences of Laplace eigenvalues. Our approach takes advantage of a recent result by Bally, Caramellino and Poly (2020): combining the Central Limit Theorem in Wasserstein distance obtained by Marinucci and Rossi (2015) for Hermite-rank $2$ functionals with new results on the asymptotic behavior of their Malliavin-Sobolev norms, we are able to establish second order Gaussian fluctuations in this stronger probability metric as soon as the functional is regular enough. Our argument requires some novel estimates on moments of products of Gegenbauer polynomials that may be of independent interest, which we prove via the link between graph theory and diagram formulas.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.