Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Connectome Features to Constrain Echo State Networks (2206.02094v2)

Published 5 Jun 2022 in cs.LG and cs.NE

Abstract: We report an improvement to the conventional Echo State Network (ESN) across three benchmark chaotic time-series prediction tasks using fruit fly connectome data alone. We also investigate the impact of key connectome-derived structural features on prediction performance -- uniquely bridging neurobiological structure and machine learning function; and find that both increasing the global average clustering coefficient and modifying the position of weights -- by permuting their synapse-synapse partners -- can lead to increased model variance and (in some cases) degraded performance. In all we consider four topological point modifications to a connectome-derived ESN reservoir (null model): namely, we alter the network sparsity, re-draw nonzero weights from a uniform distribution, permute nonzero weight positions, and increase the network global average clustering coefficient. We compare the four resulting ESN model classes -- and the null model -- with a conventional ESN by conducting time-series prediction experiments on size-variants of the Mackey-Glass 17 (MG-17), Lorenz, and Rossler chaotic time series; denoting each model's performance and variance across train-validate trials.

Citations (3)

Summary

We haven't generated a summary for this paper yet.