Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning ergodic averages in chaotic systems (2001.04027v2)

Published 9 Jan 2020 in cs.LG, cs.NE, physics.comp-ph, and physics.flu-dyn

Abstract: We propose a physics-informed machine learning method to predict the time average of a chaotic attractor. The method is based on the hybrid echo state network (hESN). We assume that the system is ergodic, so the time average is equal to the ergodic average. Compared to conventional echo state networks (ESN) (purely data-driven), the hESN uses additional information from an incomplete, or imperfect, physical model. We evaluate the performance of the hESN and compare it to that of an ESN. This approach is demonstrated on a chaotic time-delayed thermoacoustic system, where the inclusion of a physical model significantly improves the accuracy of the prediction, reducing the relative error from 48% to 7%. This improvement is obtained at the low extra cost of solving two ordinary differential equations. This framework shows the potential of using machine learning techniques combined with prior physical knowledge to improve the prediction of time-averaged quantities in chaotic systems.

Citations (10)

Summary

We haven't generated a summary for this paper yet.